9.3. Mathematical Functions and Operators
Mathematical operators are provided for many PostgreSQL types. For types without standard mathematical conventions (e.g., date/time types) we describe the actual behavior in subsequent sections.
Table 9.4 shows the mathematical operators that are available for the standard numeric types. Unless otherwise noted, operators shown as accepting numeric_type
are available for all the types smallint
, integer
, bigint
, numeric
, real
, and double precision
. Operators shown as accepting integral_type
are available for the types smallint
, integer
, and bigint
. Except where noted, each form of an operator returns the same data type as its argument(s). Calls involving multiple argument data types, such as integer
+
numeric
, are resolved by using the type appearing later in these lists.
Table 9.4. Mathematical Operators
Operator Description Example(s) |
numeric_type + numeric_type → numeric_type Addition 2 + 3 → 5 |
+ numeric_type → numeric_type Unary plus (no operation) + 3.5 → 3.5 |
numeric_type - numeric_type → numeric_type Subtraction 2 - 3 → -1 |
- numeric_type → numeric_type Negation - (-4) → 4 |
numeric_type * numeric_type → numeric_type Multiplication 2 * 3 → 6 |
numeric_type / numeric_type → numeric_type Division (for integral types, division truncates the result towards zero) 5.0 / 2 → 2.5000000000000000 5 / 2 → 2 (-5) / 2 → -2 |
numeric_type % numeric_type → numeric_type Modulo (remainder); available for smallint , integer , bigint , and numeric 5 % 4 → 1 |
numeric ^ numeric → numeric double precision ^ double precision → double precision Exponentiation (unlike typical mathematical practice, multiple uses of ^ will associate left to right) 2 ^ 3 → 8 2 ^ 3 ^ 3 → 512 |
|/ double precision → double precision Square root |/ 25.0 → 5 |
||/ double precision → double precision Cube root ||/ 64.0 → 4 |
bigint ! → numeric Factorial (deprecated, use factorial() instead) 5 ! → 120 |
!! bigint → numeric Factorial as a prefix operator (deprecated, use factorial() instead) !! 5 → 120 |
@ numeric_type → numeric_type Absolute value @ -5.0 → 5 |
integral_type & integral_type → integral_type Bitwise AND 91 & 15 → 11 |
integral_type | integral_type → integral_type Bitwise OR 32 | 3 → 35 |
integral_type # integral_type → integral_type Bitwise exclusive OR 17 # 5 → 20 |
~ integral_type → integral_type Bitwise NOT ~1 → -2 |
integral_type << integer → integral_type Bitwise shift left 1 << 4 → 16 |
integral_type >> integer → integral_type Bitwise shift right 8 >> 2 → 2 |
Table 9.5 shows the available mathematical functions. Many of these functions are provided in multiple forms with different argument types. Except where noted, any given form of a function returns the same data type as its argument(s); cross-type cases are resolved in the same way as explained above for operators. The functions working with double precision
data are mostly implemented on top of the host system's C library; accuracy and behavior in boundary cases can therefore vary depending on the host system.
Table 9.5. Mathematical Functions
Function Description Example(s) |
abs ( numeric_type ) → numeric_type Absolute value abs(-17.4) → 17.4 |
cbrt ( double precision ) → double precision Cube root cbrt(64.0) → 4 |
ceil ( numeric ) → numeric ceil ( double precision ) → double precision Nearest integer greater than or equal to argument ceil(42.2) → 43 ceil(-42.8) → -42 |
ceiling ( numeric ) → numeric ceiling ( double precision ) → double precision Nearest integer greater than or equal to argument (same as ceil ) ceiling(95.3) → 96 |
degrees ( double precision ) → double precision Converts radians to degrees degrees(0.5) → 28.64788975654116 |
div ( y numeric , x numeric ) → numeric Integer quotient of y /x (truncates towards zero) div(9,4) → 2 |
exp ( numeric ) → numeric exp ( double precision ) → double precision Exponential (e raised to the given power) exp(1.0) → 2.7182818284590452 |
factorial ( bigint ) → numeric Factorial factorial(5) → 120 |
floor ( numeric ) → numeric floor ( double precision ) → double precision Nearest integer less than or equal to argument floor(42.8) → 42 floor(-42.8) → -43 |
gcd ( numeric_type , numeric_type ) → numeric_type Greatest common divisor (the largest positive number that divides both inputs with no remainder); returns 0 if both inputs are zero; available for integer , bigint , and numeric gcd(1071, 462) → 21 |
lcm ( numeric_type , numeric_type ) → numeric_type Least common multiple (the smallest strictly positive number that is an integral multiple of both inputs); returns 0 if either input is zero; available for integer , bigint , and numeric lcm(1071, 462) → 23562 |
ln ( numeric ) → numeric ln ( double precision ) → double precision Natural logarithm ln(2.0) → 0.6931471805599453 |
log ( numeric ) → numeric log ( double precision ) → double precision Base 10 logarithm log(100) → 2 |
log10 ( numeric ) → numeric log10 ( double precision ) → double precision Base 10 logarithm (same as log ) log10(1000) → 3 |
log ( b numeric , x numeric ) → numeric Logarithm of x to base b log(2.0, 64.0) → 6.0000000000 |
min_scale ( numeric ) → integer Minimum scale (number of fractional decimal digits) needed to represent the supplied value precisely min_scale(8.4100) → 2 |
mod ( y numeric_type , x numeric_type ) → numeric_type Remainder of y /x ; available for smallint , integer , bigint , and numeric mod(9,4) → 1 |
pi ( ) → double precision Approximate value of π pi() → 3.141592653589793 |
power ( a numeric , b numeric ) → numeric power ( a double precision , b double precision ) → double precision a raised to the power of b power(9, 3) → 729 |
radians ( double precision ) → double precision Converts degrees to radians radians(45.0) → 0.7853981633974483 |
round ( numeric ) → numeric round ( double precision ) → double precision Rounds to nearest integer round(42.4) → 42 |
round ( v numeric , s integer ) → numeric Rounds v to s decimal places round(42.4382, 2) → 42.44 |
scale ( numeric ) → integer Scale of the argument (the number of decimal digits in the fractional part) scale(8.4100) → 4 |
sign ( numeric ) → numeric sign ( double precision ) → double precision Sign of the argument (-1, 0, or +1) sign(-8.4) → -1 |
sqrt ( numeric ) → numeric sqrt ( double precision ) → double precision Square root sqrt(2) → 1.4142135623730951 |
trim_scale ( numeric ) → numeric Reduces the value's scale (number of fractional decimal digits) by removing trailing zeroes trim_scale(8.4100) → 8.41 |
trunc ( numeric ) → numeric trunc ( double precision ) → double precision Truncates to integer (towards zero) trunc(42.8) → 42 trunc(-42.8) → -42 |
trunc ( v numeric , s integer ) → numeric Truncates v to s decimal places trunc(42.4382, 2) → 42.43 |
width_bucket ( operand numeric , low numeric , high numeric , count integer ) → integer width_bucket ( operand double precision , low double precision , high double precision , count integer ) → integer Returns the number of the bucket in which operand falls in a histogram having count equal-width buckets spanning the range low to high . Returns 0 or count+1 for an input outside that range. width_bucket(5.35, 0.024, 10.06, 5) → 3 |
width_bucket ( operand anyelement , thresholds anyarray ) → integer Returns the number of the bucket in which operand falls given an array listing the lower bounds of the buckets. Returns 0 for an input less than the first lower bound. operand and the array elements can be of any type having standard comparison operators. The thresholds array must be sorted, smallest first, or unexpected results will be obtained. width_bucket(now(), array['yesterday', 'today', 'tomorrow']::timestamptz[]) → 2 |
Table 9.6 shows functions for generating random numbers.
Table 9.6. Random Functions
Function Description Example(s) |
random ( ) → double precision Returns a random value in the range 0.0 <= x < 1.0 random() → 0.897124072839091 |
setseed ( double precision ) → void Sets the seed for subsequent random() calls; argument must be between -1.0 and 1.0, inclusive setseed(0.12345) |
The random()
function uses a simple linear congruential algorithm. It is fast but not suitable for cryptographic applications; see the pgcrypto module for a more secure alternative. If setseed()
is called, the series of results of subsequent random()
calls in the current session can be repeated by re-issuing setseed()
with the same argument.
Table 9.7 shows the available trigonometric functions. Each of these functions comes in two variants, one that measures angles in radians and one that measures angles in degrees.
Table 9.7. Trigonometric Functions
Function Description Example(s) |
acos ( double precision ) → double precision Inverse cosine, result in radians acos(1) → 0 |
acosd ( double precision ) → double precision Inverse cosine, result in degrees acosd(0.5) → 60 |
asin ( double precision ) → double precision Inverse sine, result in radians asin(1) → 1.5707963267948966 |
asind ( double precision ) → double precision Inverse sine, result in degrees asind(0.5) → 30 |
atan ( double precision ) → double precision Inverse tangent, result in radians atan(1) → 0.7853981633974483 |
atand ( double precision ) → double precision Inverse tangent, result in degrees atand(1) → 45 |
atan2 ( y double precision , x double precision ) → double precision Inverse tangent of y /x , result in radians atan2(1,0) → 1.5707963267948966 |
atan2d ( y double precision , x double precision ) → double precision Inverse tangent of y /x , result in degrees atan2d(1,0) → 90 |
cos ( double precision ) → double precision Cosine, argument in radians cos(0) → 1 |
cosd ( double precision ) → double precision Cosine, argument in degrees cosd(60) → 0.5 |
cot ( double precision ) → double precision Cotangent, argument in radians cot(0.5) → 1.830487721712452 |
cotd ( double precision ) → double precision Cotangent, argument in degrees cotd(45) → 1 |
sin ( double precision ) → double precision Sine, argument in radians sin(1) → 0.8414709848078965 |
sind ( double precision ) → double precision Sine, argument in degrees sind(30) → 0.5 |
tan ( double precision ) → double precision Tangent, argument in radians tan(1) → 1.5574077246549023 |
tand ( double precision ) → double precision Tangent, argument in degrees tand(45) → 1 |
Note
Another way to work with angles measured in degrees is to use the unit transformation functions radians()
and degrees()
shown earlier. However, using the degree-based trigonometric functions is preferred, as that way avoids round-off error for special cases such as sind(30)
.
Table 9.8 shows the available hyperbolic functions.
Table 9.8. Hyperbolic Functions
Function Description Example(s) |
sinh ( double precision ) → double precision Hyperbolic sine sinh(1) → 1.1752011936438014 |
cosh ( double precision ) → double precision Hyperbolic cosine cosh(0) → 1 |
tanh ( double precision ) → double precision Hyperbolic tangent tanh(1) → 0.7615941559557649 |
asinh ( double precision ) → double precision Inverse hyperbolic sine asinh(1) → 0.881373587019543 |
acosh ( double precision ) → double precision Inverse hyperbolic cosine acosh(1) → 0 |
atanh ( double precision ) → double precision Inverse hyperbolic tangent atanh(0.5) → 0.5493061443340548 |