W3cubDocs

/Rust

Type system attributes

The following attributes are used for changing how a type can be used.

The non_exhaustive attribute

The non_exhaustive attribute indicates that a type or variant may have more fields or variants added in the future. It can be applied to structs, enums, and enum variants.

The non_exhaustive attribute uses the MetaWord syntax and thus does not take any inputs.

Within the defining crate, non_exhaustive has no effect.

#![allow(unused)]
fn main() {
#[non_exhaustive]
pub struct Config {
    pub window_width: u16,
    pub window_height: u16,
}

#[non_exhaustive]
pub enum Error {
    Message(String),
    Other,
}

pub enum Message {
    #[non_exhaustive] Send { from: u32, to: u32, contents: String },
    #[non_exhaustive] Reaction(u32),
    #[non_exhaustive] Quit,
}

// Non-exhaustive structs can be constructed as normal within the defining crate.
let config = Config { window_width: 640, window_height: 480 };

// Non-exhaustive structs can be matched on exhaustively within the defining crate.
if let Config { window_width, window_height } = config {
    // ...
}

let error = Error::Other;
let message = Message::Reaction(3);

// Non-exhaustive enums can be matched on exhaustively within the defining crate.
match error {
    Error::Message(ref s) => { },
    Error::Other => { },
}

match message {
    // Non-exhaustive variants can be matched on exhaustively within the defining crate.
    Message::Send { from, to, contents } => { },
    Message::Reaction(id) => { },
    Message::Quit => { },
}
}

Outside of the defining crate, types annotated with non_exhaustive have limitations that preserve backwards compatibility when new fields or variants are added.

Non-exhaustive types cannot be constructed outside of the defining crate:

// `Config`, `Error`, and `Message` are types defined in an upstream crate that have been
// annotated as `#[non_exhaustive]`.
use upstream::{Config, Error, Message};

// Cannot construct an instance of `Config`, if new fields were added in
// a new version of `upstream` then this would fail to compile, so it is
// disallowed.
let config = Config { window_width: 640, window_height: 480 };

// Can construct an instance of `Error`, new variants being introduced would
// not result in this failing to compile.
let error = Error::Message("foo".to_string());

// Cannot construct an instance of `Message::Send` or `Message::Reaction`,
// if new fields were added in a new version of `upstream` then this would
// fail to compile, so it is disallowed.
let message = Message::Send { from: 0, to: 1, contents: "foo".to_string(), };
let message = Message::Reaction(0);

// Cannot construct an instance of `Message::Quit`, if this were converted to
// a tuple-variant `upstream` then this would fail to compile.
let message = Message::Quit;

There are limitations when matching on non-exhaustive types outside of the defining crate:

  • When pattern matching on a non-exhaustive variant (struct or enum variant), a StructPattern must be used which must include a ... Tuple variant constructor visibility is lowered to min($vis, pub(crate)).
  • When pattern matching on a non-exhaustive enum, matching on a variant does not contribute towards the exhaustiveness of the arms.
// `Config`, `Error`, and `Message` are types defined in an upstream crate that have been
// annotated as `#[non_exhaustive]`.
use upstream::{Config, Error, Message};

// Cannot match on a non-exhaustive enum without including a wildcard arm.
match error {
  Error::Message(ref s) => { },
  Error::Other => { },
  // would compile with: `_ => {},`
}

// Cannot match on a non-exhaustive struct without a wildcard.
if let Ok(Config { window_width, window_height }) = config {
    // would compile with: `..`
}

match message {
  // Cannot match on a non-exhaustive struct enum variant without including a wildcard.
  Message::Send { from, to, contents } => { },
  // Cannot match on a non-exhaustive tuple or unit enum variant.
  Message::Reaction(type) => { },
  Message::Quit => { },
}

Non-exhaustive types are always considered inhabited in downstream crates.

© 2010 The Rust Project Developers
Licensed under the Apache License, Version 2.0 or the MIT license, at your option.
https://doc.rust-lang.org/reference/attributes/type_system.html