pub struct Ipv4Addr { /* fields omitted */ }
An IPv4 address.
IPv4 addresses are defined as 32-bit integers in IETF RFC 791. They are usually represented as four octets.
See IpAddr
for a type encompassing both IPv4 and IPv6 addresses.
The size of an Ipv4Addr
struct may vary depending on the target operating system.
Ipv4Addr
provides a FromStr
implementation. The four octets are in decimal notation, divided by .
(this is called "dot-decimal notation").
use std::net::Ipv4Addr; let localhost = Ipv4Addr::new(127, 0, 0, 1); assert_eq!("127.0.0.1".parse(), Ok(localhost)); assert_eq!(localhost.is_loopback(), true);
impl Ipv4Addr
[src]
pub const fn new(a: u8, b: u8, c: u8, d: u8) -> Ipv4Addr
[src]
Creates a new IPv4 address from four eight-bit octets.
The result will represent the IP address a
.b
.c
.d
.
pub const LOCALHOST: Self
[src]1.30.0
An IPv4 address with the address pointing to localhost: 127.0.0.1.
pub const UNSPECIFIED: Self
[src]1.30.0
An IPv4 address representing an unspecified address: 0.0.0.0
pub const BROADCAST: Self
[src]1.30.0
An IPv4 address representing the broadcast address: 255.255.255.255
pub fn octets(&self) -> [u8; 4]
[src]
Returns the four eight-bit integers that make up this address.
pub const fn is_unspecified(&self) -> bool
[src]1.12.0
Returns true
for the special 'unspecified' address (0.0.0.0).
This property is defined in UNIX Network Programming, Second Edition, W. Richard Stevens, p. 891; see also ip7.
pub fn is_loopback(&self) -> bool
[src]1.7.0
Returns true
if this is a loopback address (127.0.0.0/8).
This property is defined by IETF RFC 1122.
pub fn is_private(&self) -> bool
[src]1.7.0
Returns true
if this is a private address.
The private address ranges are defined in IETF RFC 1918 and include:
use std::net::Ipv4Addr; assert_eq!(Ipv4Addr::new(10, 0, 0, 1).is_private(), true); assert_eq!(Ipv4Addr::new(10, 10, 10, 10).is_private(), true); assert_eq!(Ipv4Addr::new(172, 16, 10, 10).is_private(), true); assert_eq!(Ipv4Addr::new(172, 29, 45, 14).is_private(), true); assert_eq!(Ipv4Addr::new(172, 32, 0, 2).is_private(), false); assert_eq!(Ipv4Addr::new(192, 168, 0, 2).is_private(), true); assert_eq!(Ipv4Addr::new(192, 169, 0, 2).is_private(), false);
pub fn is_link_local(&self) -> bool
[src]1.7.0
Returns true
if the address is link-local (169.254.0.0/16).
This property is defined by IETF RFC 3927.
pub fn is_global(&self) -> bool
[src]
Returns true
if the address appears to be globally routable. See iana-ipv4-special-registry.
The following return false
:
Ipv4Addr::is_private()
)Ipv4Addr::is_loopback()
)Ipv4Addr::is_link_local()
)Ipv4Addr::is_broadcast()
)Ipv4Addr::is_documentation()
)Ipv4Addr::is_unspecified()
), and the whole 0.0.0.0/8 blockIpv4Addr::is_ietf_protocol_assignment()
, except 192.0.0.9/32
and 192.0.0.10/32
which are globally routableIpv4Addr::is_reserved()
Ipv4Addr::is_benchmarking()
)#![feature(ip)] use std::net::Ipv4Addr; // private addresses are not global assert_eq!(Ipv4Addr::new(10, 254, 0, 0).is_global(), false); assert_eq!(Ipv4Addr::new(192, 168, 10, 65).is_global(), false); assert_eq!(Ipv4Addr::new(172, 16, 10, 65).is_global(), false); // the 0.0.0.0/8 block is not global assert_eq!(Ipv4Addr::new(0, 1, 2, 3).is_global(), false); // in particular, the unspecified address is not global assert_eq!(Ipv4Addr::new(0, 0, 0, 0).is_global(), false); // the loopback address is not global assert_eq!(Ipv4Addr::new(127, 0, 0, 1).is_global(), false); // link local addresses are not global assert_eq!(Ipv4Addr::new(169, 254, 45, 1).is_global(), false); // the broadcast address is not global assert_eq!(Ipv4Addr::new(255, 255, 255, 255).is_global(), false); // the address space designated for documentation is not global assert_eq!(Ipv4Addr::new(192, 0, 2, 255).is_global(), false); assert_eq!(Ipv4Addr::new(198, 51, 100, 65).is_global(), false); assert_eq!(Ipv4Addr::new(203, 0, 113, 6).is_global(), false); // shared addresses are not global assert_eq!(Ipv4Addr::new(100, 100, 0, 0).is_global(), false); // addresses reserved for protocol assignment are not global assert_eq!(Ipv4Addr::new(192, 0, 0, 0).is_global(), false); assert_eq!(Ipv4Addr::new(192, 0, 0, 255).is_global(), false); // addresses reserved for future use are not global assert_eq!(Ipv4Addr::new(250, 10, 20, 30).is_global(), false); // addresses reserved for network devices benchmarking are not global assert_eq!(Ipv4Addr::new(198, 18, 0, 0).is_global(), false); // All the other addresses are global assert_eq!(Ipv4Addr::new(1, 1, 1, 1).is_global(), true); assert_eq!(Ipv4Addr::new(80, 9, 12, 3).is_global(), true);
pub fn is_shared(&self) -> bool
[src]
Returns true
if this address is part of the Shared Address Space defined in IETF RFC 6598 (100.64.0.0/10
).
pub fn is_ietf_protocol_assignment(&self) -> bool
[src]
Returns true
if this address is part of 192.0.0.0/24
, which is reserved to IANA for IETF protocol assignments, as documented in IETF RFC 6890.
Note that parts of this block are in use:
192.0.0.8/32
is the "IPv4 dummy address" (see IETF RFC 7600)192.0.0.9/32
is the "Port Control Protocol Anycast" (see IETF RFC 7723)192.0.0.10/32
is used for NAT traversal (see IETF RFC 8155)#![feature(ip)] use std::net::Ipv4Addr; assert_eq!(Ipv4Addr::new(192, 0, 0, 0).is_ietf_protocol_assignment(), true); assert_eq!(Ipv4Addr::new(192, 0, 0, 8).is_ietf_protocol_assignment(), true); assert_eq!(Ipv4Addr::new(192, 0, 0, 9).is_ietf_protocol_assignment(), true); assert_eq!(Ipv4Addr::new(192, 0, 0, 255).is_ietf_protocol_assignment(), true); assert_eq!(Ipv4Addr::new(192, 0, 1, 0).is_ietf_protocol_assignment(), false); assert_eq!(Ipv4Addr::new(191, 255, 255, 255).is_ietf_protocol_assignment(), false);
pub fn is_benchmarking(&self) -> bool
[src]
Returns true
if this address part of the 198.18.0.0/15
range, which is reserved for network devices benchmarking. This range is defined in IETF RFC 2544 as 192.18.0.0
through 198.19.255.255
but errata 423 corrects it to 198.18.0.0/15
.
#![feature(ip)] use std::net::Ipv4Addr; assert_eq!(Ipv4Addr::new(198, 17, 255, 255).is_benchmarking(), false); assert_eq!(Ipv4Addr::new(198, 18, 0, 0).is_benchmarking(), true); assert_eq!(Ipv4Addr::new(198, 19, 255, 255).is_benchmarking(), true); assert_eq!(Ipv4Addr::new(198, 20, 0, 0).is_benchmarking(), false);
pub fn is_reserved(&self) -> bool
[src]
Returns true
if this address is reserved by IANA for future use. IETF RFC 1112 defines the block of reserved addresses as 240.0.0.0/4
. This range normally includes the broadcast address 255.255.255.255
, but this implementation explicitly excludes it, since it is obviously not reserved for future use.
As IANA assigns new addresses, this method will be updated. This may result in non-reserved addresses being treated as reserved in code that relies on an outdated version of this method.
#![feature(ip)] use std::net::Ipv4Addr; assert_eq!(Ipv4Addr::new(240, 0, 0, 0).is_reserved(), true); assert_eq!(Ipv4Addr::new(255, 255, 255, 254).is_reserved(), true); assert_eq!(Ipv4Addr::new(239, 255, 255, 255).is_reserved(), false); // The broadcast address is not considered as reserved for future use by this implementation assert_eq!(Ipv4Addr::new(255, 255, 255, 255).is_reserved(), false);
pub fn is_multicast(&self) -> bool
[src]1.7.0
Returns true
if this is a multicast address (224.0.0.0/4).
Multicast addresses have a most significant octet between 224 and 239, and is defined by IETF RFC 5771.
pub fn is_broadcast(&self) -> bool
[src]1.7.0
Returns true
if this is a broadcast address (255.255.255.255).
A broadcast address has all octets set to 255 as defined in IETF RFC 919.
pub fn is_documentation(&self) -> bool
[src]1.7.0
Returns true
if this address is in a range designated for documentation.
This is defined in IETF RFC 5737:
pub fn to_ipv6_compatible(&self) -> Ipv6Addr
[src]
pub fn to_ipv6_mapped(&self) -> Ipv6Addr
[src]
impl Clone for Ipv4Addr
[src]
impl Copy for Ipv4Addr
[src]
impl Debug for Ipv4Addr
[src]
impl Display for Ipv4Addr
[src]
impl Eq for Ipv4Addr
[src]
impl From<[u8; 4]> for Ipv4Addr
[src]1.9.0
impl From<Ipv4Addr> for IpAddr
[src]1.16.0
impl From<Ipv4Addr> for u32
[src]1.1.0
impl From<u32> for Ipv4Addr
[src]1.1.0
impl FromStr for Ipv4Addr
[src]
type Err = AddrParseError
The associated error which can be returned from parsing.
fn from_str(s: &str) -> Result<Ipv4Addr, AddrParseError>
[src]
impl Hash for Ipv4Addr
[src]
fn hash<H: Hasher>(&self, s: &mut H)
[src]
fn hash_slice<H>(data: &[Self], state: &mut H) where
H: Hasher,
[src]1.3.0
impl Ord for Ipv4Addr
[src]
fn cmp(&self, other: &Ipv4Addr) -> Ordering
[src]
fn max(self, other: Self) -> Self
[src]1.21.0
fn min(self, other: Self) -> Self
[src]1.21.0
fn clamp(self, min: Self, max: Self) -> Self
[src]
impl PartialEq<IpAddr> for Ipv4Addr
[src]1.16.0
impl PartialEq<Ipv4Addr> for Ipv4Addr
[src]
impl PartialEq<Ipv4Addr> for IpAddr
[src]1.16.0
impl PartialOrd<IpAddr> for Ipv4Addr
[src]1.16.0
fn partial_cmp(&self, other: &IpAddr) -> Option<Ordering>
[src]
fn lt(&self, other: &Rhs) -> bool
[src]
fn le(&self, other: &Rhs) -> bool
[src]
fn gt(&self, other: &Rhs) -> bool
[src]
fn ge(&self, other: &Rhs) -> bool
[src]
impl PartialOrd<Ipv4Addr> for Ipv4Addr
[src]
fn partial_cmp(&self, other: &Ipv4Addr) -> Option<Ordering>
[src]
fn lt(&self, other: &Rhs) -> bool
[src]
fn le(&self, other: &Rhs) -> bool
[src]
fn gt(&self, other: &Rhs) -> bool
[src]
fn ge(&self, other: &Rhs) -> bool
[src]
impl PartialOrd<Ipv4Addr> for IpAddr
[src]1.16.0
impl RefUnwindSafe for Ipv4Addr
impl Send for Ipv4Addr
impl Sync for Ipv4Addr
impl Unpin for Ipv4Addr
impl UnwindSafe for Ipv4Addr
impl<T> Any for T where
T: 'static + ?Sized,
[src]
impl<T> Borrow<T> for T where
T: ?Sized,
[src]
fn borrow(&self) -> &TⓘNotable traits for &'_ mut F
impl<'_, F> Future for &'_ mut F where
F: Unpin + Future + ?Sized,
type Output = <F as Future>::Output;
impl<'_, I> Iterator for &'_ mut I where
I: Iterator + ?Sized,
type Item = <I as Iterator>::Item;
impl<R: Read + ?Sized, '_> Read for &'_ mut R
impl<W: Write + ?Sized, '_> Write for &'_ mut W
[src]
impl<T> BorrowMut<T> for T where
T: ?Sized,
[src]
fn borrow_mut(&mut self) -> &mut TⓘNotable traits for &'_ mut F
impl<'_, F> Future for &'_ mut F where
F: Unpin + Future + ?Sized,
type Output = <F as Future>::Output;
impl<'_, I> Iterator for &'_ mut I where
I: Iterator + ?Sized,
type Item = <I as Iterator>::Item;
impl<R: Read + ?Sized, '_> Read for &'_ mut R
impl<W: Write + ?Sized, '_> Write for &'_ mut W
[src]
impl<T> From<T> for T
[src]
impl<T, U> Into<U> for T where
U: From<T>,
[src]
impl<T> ToOwned for T where
T: Clone,
[src]
type Owned = T
The resulting type after obtaining ownership.
fn to_owned(&self) -> T
[src]
fn clone_into(&self, target: &mut T)
[src]
impl<T> ToString for T where
T: Display + ?Sized,
[src]
impl<T, U> TryFrom<U> for T where
U: Into<T>,
[src]
type Error = Infallible
The type returned in the event of a conversion error.
fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>
[src]
impl<T, U> TryInto<U> for T where
U: TryFrom<T>,
[src]
© 2010 The Rust Project Developers
Licensed under the Apache License, Version 2.0 or the MIT license, at your option.
https://doc.rust-lang.org/std/net/struct.Ipv4Addr.html