pub struct Ipv4Addr { /* fields omitted */ }
An IPv4 address.
IPv4 addresses are defined as 32-bit integers in IETF RFC 791. They are usually represented as four octets.
See IpAddr for a type encompassing both IPv4 and IPv6 addresses.
The size of an Ipv4Addr struct may vary depending on the target operating system.
Ipv4Addr provides a FromStr implementation. The four octets are in decimal notation, divided by . (this is called "dot-decimal notation").
use std::net::Ipv4Addr;
let localhost = Ipv4Addr::new(127, 0, 0, 1);
assert_eq!("127.0.0.1".parse(), Ok(localhost));
assert_eq!(localhost.is_loopback(), true);impl Ipv4Addr[src]
pub const fn new(a: u8, b: u8, c: u8, d: u8) -> Ipv4Addr[src]
Creates a new IPv4 address from four eight-bit octets.
The result will represent the IP address a.b.c.d.
use std::net::Ipv4Addr; let addr = Ipv4Addr::new(127, 0, 0, 1);
pub const LOCALHOST: Self[src]1.30.0
An IPv4 address with the address pointing to localhost: 127.0.0.1.
use std::net::Ipv4Addr; let addr = Ipv4Addr::LOCALHOST; assert_eq!(addr, Ipv4Addr::new(127, 0, 0, 1));
pub const UNSPECIFIED: Self[src]1.30.0
An IPv4 address representing an unspecified address: 0.0.0.0
use std::net::Ipv4Addr; let addr = Ipv4Addr::UNSPECIFIED; assert_eq!(addr, Ipv4Addr::new(0, 0, 0, 0));
pub const BROADCAST: Self[src]1.30.0
An IPv4 address representing the broadcast address: 255.255.255.255
use std::net::Ipv4Addr; let addr = Ipv4Addr::BROADCAST; assert_eq!(addr, Ipv4Addr::new(255, 255, 255, 255));
pub fn octets(&self) -> [u8; 4][src]
Returns the four eight-bit integers that make up this address.
use std::net::Ipv4Addr; let addr = Ipv4Addr::new(127, 0, 0, 1); assert_eq!(addr.octets(), [127, 0, 0, 1]);
pub const fn is_unspecified(&self) -> bool[src]1.12.0
Returns true for the special 'unspecified' address (0.0.0.0).
This property is defined in UNIX Network Programming, Second Edition, W. Richard Stevens, p. 891; see also ip7.
use std::net::Ipv4Addr; assert_eq!(Ipv4Addr::new(0, 0, 0, 0).is_unspecified(), true); assert_eq!(Ipv4Addr::new(45, 22, 13, 197).is_unspecified(), false);
pub fn is_loopback(&self) -> bool[src]1.7.0
Returns true if this is a loopback address (127.0.0.0/8).
This property is defined by IETF RFC 1122.
use std::net::Ipv4Addr; assert_eq!(Ipv4Addr::new(127, 0, 0, 1).is_loopback(), true); assert_eq!(Ipv4Addr::new(45, 22, 13, 197).is_loopback(), false);
pub fn is_private(&self) -> bool[src]1.7.0
Returns true if this is a private address.
The private address ranges are defined in IETF RFC 1918 and include:
use std::net::Ipv4Addr; assert_eq!(Ipv4Addr::new(10, 0, 0, 1).is_private(), true); assert_eq!(Ipv4Addr::new(10, 10, 10, 10).is_private(), true); assert_eq!(Ipv4Addr::new(172, 16, 10, 10).is_private(), true); assert_eq!(Ipv4Addr::new(172, 29, 45, 14).is_private(), true); assert_eq!(Ipv4Addr::new(172, 32, 0, 2).is_private(), false); assert_eq!(Ipv4Addr::new(192, 168, 0, 2).is_private(), true); assert_eq!(Ipv4Addr::new(192, 169, 0, 2).is_private(), false);
pub fn is_link_local(&self) -> bool[src]1.7.0
Returns true if the address is link-local (169.254.0.0/16).
This property is defined by IETF RFC 3927.
use std::net::Ipv4Addr; assert_eq!(Ipv4Addr::new(169, 254, 0, 0).is_link_local(), true); assert_eq!(Ipv4Addr::new(169, 254, 10, 65).is_link_local(), true); assert_eq!(Ipv4Addr::new(16, 89, 10, 65).is_link_local(), false);
pub fn is_global(&self) -> bool[src]
Returns true if the address appears to be globally routable. See iana-ipv4-special-registry.
The following return false:
Ipv4Addr::is_private())Ipv4Addr::is_loopback())Ipv4Addr::is_link_local())Ipv4Addr::is_broadcast())Ipv4Addr::is_documentation())Ipv4Addr::is_unspecified()), and the whole 0.0.0.0/8 blockIpv4Addr::is_ietf_protocol_assignment(), except 192.0.0.9/32 and 192.0.0.10/32 which are globally routableIpv4Addr::is_reserved()
Ipv4Addr::is_benchmarking())#![feature(ip)] use std::net::Ipv4Addr; // private addresses are not global assert_eq!(Ipv4Addr::new(10, 254, 0, 0).is_global(), false); assert_eq!(Ipv4Addr::new(192, 168, 10, 65).is_global(), false); assert_eq!(Ipv4Addr::new(172, 16, 10, 65).is_global(), false); // the 0.0.0.0/8 block is not global assert_eq!(Ipv4Addr::new(0, 1, 2, 3).is_global(), false); // in particular, the unspecified address is not global assert_eq!(Ipv4Addr::new(0, 0, 0, 0).is_global(), false); // the loopback address is not global assert_eq!(Ipv4Addr::new(127, 0, 0, 1).is_global(), false); // link local addresses are not global assert_eq!(Ipv4Addr::new(169, 254, 45, 1).is_global(), false); // the broadcast address is not global assert_eq!(Ipv4Addr::new(255, 255, 255, 255).is_global(), false); // the address space designated for documentation is not global assert_eq!(Ipv4Addr::new(192, 0, 2, 255).is_global(), false); assert_eq!(Ipv4Addr::new(198, 51, 100, 65).is_global(), false); assert_eq!(Ipv4Addr::new(203, 0, 113, 6).is_global(), false); // shared addresses are not global assert_eq!(Ipv4Addr::new(100, 100, 0, 0).is_global(), false); // addresses reserved for protocol assignment are not global assert_eq!(Ipv4Addr::new(192, 0, 0, 0).is_global(), false); assert_eq!(Ipv4Addr::new(192, 0, 0, 255).is_global(), false); // addresses reserved for future use are not global assert_eq!(Ipv4Addr::new(250, 10, 20, 30).is_global(), false); // addresses reserved for network devices benchmarking are not global assert_eq!(Ipv4Addr::new(198, 18, 0, 0).is_global(), false); // All the other addresses are global assert_eq!(Ipv4Addr::new(1, 1, 1, 1).is_global(), true); assert_eq!(Ipv4Addr::new(80, 9, 12, 3).is_global(), true);
pub fn is_shared(&self) -> bool[src]
Returns true if this address is part of the Shared Address Space defined in IETF RFC 6598 (100.64.0.0/10).
#![feature(ip)] use std::net::Ipv4Addr; assert_eq!(Ipv4Addr::new(100, 64, 0, 0).is_shared(), true); assert_eq!(Ipv4Addr::new(100, 127, 255, 255).is_shared(), true); assert_eq!(Ipv4Addr::new(100, 128, 0, 0).is_shared(), false);
pub fn is_ietf_protocol_assignment(&self) -> bool[src]
Returns true if this address is part of 192.0.0.0/24, which is reserved to IANA for IETF protocol assignments, as documented in IETF RFC 6890.
Note that parts of this block are in use:
192.0.0.8/32 is the "IPv4 dummy address" (see IETF RFC 7600)192.0.0.9/32 is the "Port Control Protocol Anycast" (see IETF RFC 7723)192.0.0.10/32 is used for NAT traversal (see IETF RFC 8155)#![feature(ip)] use std::net::Ipv4Addr; assert_eq!(Ipv4Addr::new(192, 0, 0, 0).is_ietf_protocol_assignment(), true); assert_eq!(Ipv4Addr::new(192, 0, 0, 8).is_ietf_protocol_assignment(), true); assert_eq!(Ipv4Addr::new(192, 0, 0, 9).is_ietf_protocol_assignment(), true); assert_eq!(Ipv4Addr::new(192, 0, 0, 255).is_ietf_protocol_assignment(), true); assert_eq!(Ipv4Addr::new(192, 0, 1, 0).is_ietf_protocol_assignment(), false); assert_eq!(Ipv4Addr::new(191, 255, 255, 255).is_ietf_protocol_assignment(), false);
pub fn is_benchmarking(&self) -> bool[src]
Returns true if this address part of the 198.18.0.0/15 range, which is reserved for network devices benchmarking. This range is defined in IETF RFC 2544 as 192.18.0.0 through 198.19.255.255 but errata 423 corrects it to 198.18.0.0/15.
#![feature(ip)] use std::net::Ipv4Addr; assert_eq!(Ipv4Addr::new(198, 17, 255, 255).is_benchmarking(), false); assert_eq!(Ipv4Addr::new(198, 18, 0, 0).is_benchmarking(), true); assert_eq!(Ipv4Addr::new(198, 19, 255, 255).is_benchmarking(), true); assert_eq!(Ipv4Addr::new(198, 20, 0, 0).is_benchmarking(), false);
pub fn is_reserved(&self) -> bool[src]
Returns true if this address is reserved by IANA for future use. IETF RFC 1112 defines the block of reserved addresses as 240.0.0.0/4. This range normally includes the broadcast address 255.255.255.255, but this implementation explicitly excludes it, since it is obviously not reserved for future use.
As IANA assigns new addresses, this method will be updated. This may result in non-reserved addresses being treated as reserved in code that relies on an outdated version of this method.
#![feature(ip)] use std::net::Ipv4Addr; assert_eq!(Ipv4Addr::new(240, 0, 0, 0).is_reserved(), true); assert_eq!(Ipv4Addr::new(255, 255, 255, 254).is_reserved(), true); assert_eq!(Ipv4Addr::new(239, 255, 255, 255).is_reserved(), false); // The broadcast address is not considered as reserved for future use by this implementation assert_eq!(Ipv4Addr::new(255, 255, 255, 255).is_reserved(), false);
pub fn is_multicast(&self) -> bool[src]1.7.0
Returns true if this is a multicast address (224.0.0.0/4).
Multicast addresses have a most significant octet between 224 and 239, and is defined by IETF RFC 5771.
use std::net::Ipv4Addr; assert_eq!(Ipv4Addr::new(224, 254, 0, 0).is_multicast(), true); assert_eq!(Ipv4Addr::new(236, 168, 10, 65).is_multicast(), true); assert_eq!(Ipv4Addr::new(172, 16, 10, 65).is_multicast(), false);
pub fn is_broadcast(&self) -> bool[src]1.7.0
Returns true if this is a broadcast address (255.255.255.255).
A broadcast address has all octets set to 255 as defined in IETF RFC 919.
use std::net::Ipv4Addr; assert_eq!(Ipv4Addr::new(255, 255, 255, 255).is_broadcast(), true); assert_eq!(Ipv4Addr::new(236, 168, 10, 65).is_broadcast(), false);
pub fn is_documentation(&self) -> bool[src]1.7.0
Returns true if this address is in a range designated for documentation.
This is defined in IETF RFC 5737:
use std::net::Ipv4Addr; assert_eq!(Ipv4Addr::new(192, 0, 2, 255).is_documentation(), true); assert_eq!(Ipv4Addr::new(198, 51, 100, 65).is_documentation(), true); assert_eq!(Ipv4Addr::new(203, 0, 113, 6).is_documentation(), true); assert_eq!(Ipv4Addr::new(193, 34, 17, 19).is_documentation(), false);
pub fn to_ipv6_compatible(&self) -> Ipv6Addr[src]
Converts this address to an IPv4-compatible IPv6 address.
a.b.c.d becomes ::a.b.c.d
use std::net::{Ipv4Addr, Ipv6Addr};
assert_eq!(
Ipv4Addr::new(192, 0, 2, 255).to_ipv6_compatible(),
Ipv6Addr::new(0, 0, 0, 0, 0, 0, 49152, 767)
);pub fn to_ipv6_mapped(&self) -> Ipv6Addr[src]
Converts this address to an IPv4-mapped IPv6 address.
a.b.c.d becomes ::ffff:a.b.c.d
use std::net::{Ipv4Addr, Ipv6Addr};
assert_eq!(Ipv4Addr::new(192, 0, 2, 255).to_ipv6_mapped(),
Ipv6Addr::new(0, 0, 0, 0, 0, 65535, 49152, 767));impl Clone for Ipv4Addr[src]
impl Copy for Ipv4Addr[src]
impl Debug for Ipv4Addr[src]
impl Display for Ipv4Addr[src]
impl Eq for Ipv4Addr[src]
impl From<[u8; 4]> for Ipv4Addr[src]1.9.0
fn from(octets: [u8; 4]) -> Ipv4Addr[src]
Creates an Ipv4Addr from a four element byte array.
use std::net::Ipv4Addr; let addr = Ipv4Addr::from([13u8, 12u8, 11u8, 10u8]); assert_eq!(Ipv4Addr::new(13, 12, 11, 10), addr);
impl From<Ipv4Addr> for IpAddr[src]1.16.0
fn from(ipv4: Ipv4Addr) -> IpAddr[src]
Copies this address to a new IpAddr::V4.
use std::net::{IpAddr, Ipv4Addr};
let addr = Ipv4Addr::new(127, 0, 0, 1);
assert_eq!(
IpAddr::V4(addr),
IpAddr::from(addr)
)impl From<Ipv4Addr> for u32[src]1.1.0
fn from(ip: Ipv4Addr) -> u32[src]
Converts an Ipv4Addr into a host byte order u32.
use std::net::Ipv4Addr; let addr = Ipv4Addr::new(0xca, 0xfe, 0xba, 0xbe); assert_eq!(0xcafebabe, u32::from(addr));
impl From<u32> for Ipv4Addr[src]1.1.0
fn from(ip: u32) -> Ipv4Addr[src]
Converts a host byte order u32 into an Ipv4Addr.
use std::net::Ipv4Addr; let addr = Ipv4Addr::from(0xcafebabe); assert_eq!(Ipv4Addr::new(0xca, 0xfe, 0xba, 0xbe), addr);
impl FromStr for Ipv4Addr[src]
type Err = AddrParseErrorThe associated error which can be returned from parsing.
fn from_str(s: &str) -> Result<Ipv4Addr, AddrParseError>[src]
impl Hash for Ipv4Addr[src]
fn hash<H:Â Hasher>(&self, s: &mut H)[src]
fn hash_slice<H>(data: &[Self], state: &mut H) where
    H: Hasher, [src]1.3.0
impl Ord for Ipv4Addr[src]
fn cmp(&self, other: &Ipv4Addr) -> Ordering[src]
fn max(self, other: Self) -> Self[src]1.21.0
fn min(self, other: Self) -> Self[src]1.21.0
fn clamp(self, min: Self, max: Self) -> Self[src]
impl PartialEq<IpAddr> for Ipv4Addr[src]1.16.0
impl PartialEq<Ipv4Addr> for Ipv4Addr[src]
impl PartialEq<Ipv4Addr> for IpAddr[src]1.16.0
impl PartialOrd<IpAddr> for Ipv4Addr[src]1.16.0
fn partial_cmp(&self, other: &IpAddr) -> Option<Ordering>[src]
fn lt(&self, other: &Rhs) -> bool[src]
fn le(&self, other: &Rhs) -> bool[src]
fn gt(&self, other: &Rhs) -> bool[src]
fn ge(&self, other: &Rhs) -> bool[src]
impl PartialOrd<Ipv4Addr> for Ipv4Addr[src]
fn partial_cmp(&self, other: &Ipv4Addr) -> Option<Ordering>[src]
fn lt(&self, other: &Rhs) -> bool[src]
fn le(&self, other: &Rhs) -> bool[src]
fn gt(&self, other: &Rhs) -> bool[src]
fn ge(&self, other: &Rhs) -> bool[src]
impl PartialOrd<Ipv4Addr> for IpAddr[src]1.16.0
impl RefUnwindSafe for Ipv4Addrimpl Send for Ipv4Addrimpl Sync for Ipv4Addrimpl Unpin for Ipv4Addrimpl UnwindSafe for Ipv4Addrimpl<T> Any for T where
    T: 'static + ?Sized, [src]
impl<T> Borrow<T> for T where
    T: ?Sized, [src]
fn borrow(&self) -> &TⓘNotable traits for &'_ mut F
impl<'_, F> Future for &'_ mut F where
    F: Unpin + Future + ?Sized,Â
type Output = <F as Future>::Output;
impl<'_, I> Iterator for &'_ mut I where
    I: Iterator + ?Sized,Â
type Item = <I as Iterator>::Item;
impl<R:Â Read + ?Sized, '_> Read for &'_ mut R
impl<W:Â Write + ?Sized, '_> Write for &'_ mut W
[src]
impl<T> BorrowMut<T> for T where
    T: ?Sized, [src]
fn borrow_mut(&mut self) -> &mut TⓘNotable traits for &'_ mut F
impl<'_, F> Future for &'_ mut F where
    F: Unpin + Future + ?Sized,Â
type Output = <F as Future>::Output;
impl<'_, I> Iterator for &'_ mut I where
    I: Iterator + ?Sized,Â
type Item = <I as Iterator>::Item;
impl<R:Â Read + ?Sized, '_> Read for &'_ mut R
impl<W:Â Write + ?Sized, '_> Write for &'_ mut W
[src]
impl<T> From<T> for T[src]
impl<T, U> Into<U> for T where
    U: From<T>, [src]
impl<T> ToOwned for T where
    T: Clone, [src]
type Owned = TThe resulting type after obtaining ownership.
fn to_owned(&self) -> T[src]
fn clone_into(&self, target: &mut T)[src]
impl<T> ToString for T where
    T: Display + ?Sized, [src]
impl<T, U> TryFrom<U> for T where
    U: Into<T>, [src]
type Error = InfallibleThe type returned in the event of a conversion error.
fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>[src]
impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, [src]
© 2010 The Rust Project Developers
Licensed under the Apache License, Version 2.0 or the MIT license, at your option.
https://doc.rust-lang.org/std/net/struct.Ipv4Addr.html