pub struct Ipv6Addr { /* fields omitted */ }
An IPv6 address.
IPv6 addresses are defined as 128-bit integers in IETF RFC 4291. They are usually represented as eight 16-bit segments.
See IpAddr for a type encompassing both IPv4 and IPv6 addresses.
The size of an Ipv6Addr struct may vary depending on the target operating system.
Ipv6Addr provides a FromStr implementation. There are many ways to represent an IPv6 address in text, but in general, each segments is written in hexadecimal notation, and segments are separated by :. For more information, see IETF RFC 5952.
use std::net::Ipv6Addr;
let localhost = Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1);
assert_eq!("::1".parse(), Ok(localhost));
assert_eq!(localhost.is_loopback(), true);impl Ipv6Addr[src]
pub const fn new(
a: u16,
b: u16,
c: u16,
d: u16,
e: u16,
f: u16,
g: u16,
h: u16
) -> Ipv6Addr[src]
Creates a new IPv6 address from eight 16-bit segments.
The result will represent the IP address a:b:c:d:e:f:g:h.
use std::net::Ipv6Addr; let addr = Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff);
pub const LOCALHOST: Self[src]1.30.0
An IPv6 address representing localhost: ::1.
use std::net::Ipv6Addr; let addr = Ipv6Addr::LOCALHOST; assert_eq!(addr, Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1));
pub const UNSPECIFIED: Self[src]1.30.0
An IPv6 address representing the unspecified address: ::
use std::net::Ipv6Addr; let addr = Ipv6Addr::UNSPECIFIED; assert_eq!(addr, Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0));
pub fn segments(&self) -> [u16; 8][src]
Returns the eight 16-bit segments that make up this address.
use std::net::Ipv6Addr;
assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).segments(),
[0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff]);pub fn is_unspecified(&self) -> bool[src]1.7.0
Returns true for the special 'unspecified' address (::).
This property is defined in IETF RFC 4291.
use std::net::Ipv6Addr; assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_unspecified(), false); assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0).is_unspecified(), true);
pub fn is_loopback(&self) -> bool[src]1.7.0
Returns true if this is a loopback address (::1).
This property is defined in IETF RFC 4291.
use std::net::Ipv6Addr; assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_loopback(), false); assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0x1).is_loopback(), true);
pub fn is_global(&self) -> bool[src]
Returns true if the address appears to be globally routable.
The following return false:
#![feature(ip)] use std::net::Ipv6Addr; assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_global(), true); assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0x1).is_global(), false); assert_eq!(Ipv6Addr::new(0, 0, 0x1c9, 0, 0, 0xafc8, 0, 0x1).is_global(), true);
pub fn is_unique_local(&self) -> bool[src]
Returns true if this is a unique local address (fc00::/7).
This property is defined in IETF RFC 4193.
#![feature(ip)] use std::net::Ipv6Addr; assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_unique_local(), false); assert_eq!(Ipv6Addr::new(0xfc02, 0, 0, 0, 0, 0, 0, 0).is_unique_local(), true);
pub fn is_unicast_link_local_strict(&self) -> bool[src]
Returns true if the address is a unicast link-local address (fe80::/64).
A common mis-conception is to think that "unicast link-local addresses start with fe80::", but the IETF RFC 4291 actually defines a stricter format for these addresses:
| 10 | | bits | 54 bits | 64 bits | +----------+-------------------------+----------------------------+ |1111111010| 0 | interface ID | +----------+-------------------------+----------------------------+
This method validates the format defined in the RFC and won't recognize the following addresses such as fe80:0:0:1:: or fe81:: as unicast link-local addresses for example. If you need a less strict validation use Ipv6Addr::is_unicast_link_local() instead.
#![feature(ip)] use std::net::Ipv6Addr; let ip = Ipv6Addr::new(0xfe80, 0, 0, 0, 0, 0, 0, 0); assert!(ip.is_unicast_link_local_strict()); let ip = Ipv6Addr::new(0xfe80, 0, 0, 0, 0xffff, 0xffff, 0xffff, 0xffff); assert!(ip.is_unicast_link_local_strict()); let ip = Ipv6Addr::new(0xfe80, 0, 0, 1, 0, 0, 0, 0); assert!(!ip.is_unicast_link_local_strict()); assert!(ip.is_unicast_link_local()); let ip = Ipv6Addr::new(0xfe81, 0, 0, 0, 0, 0, 0, 0); assert!(!ip.is_unicast_link_local_strict()); assert!(ip.is_unicast_link_local());
Ipv6Addr::is_unicast_link_local()pub fn is_unicast_link_local(&self) -> bool[src]
Returns true if the address is a unicast link-local address (fe80::/10).
This method returns true for addresses in the range reserved by [RFC 4291 section 2.4], i.e. addresses with the following format:
| 10 | | bits | 54 bits | 64 bits | +----------+-------------------------+----------------------------+ |1111111010| arbitratry value | interface ID | +----------+-------------------------+----------------------------+
As a result, this method consider addresses such as fe80:0:0:1:: or fe81:: to be unicast link-local addresses, whereas Ipv6Addr::is_unicast_link_local_strict() does not. If you need a strict validation fully compliant with the RFC, use Ipv6Addr::is_unicast_link_local_strict() instead.
#![feature(ip)] use std::net::Ipv6Addr; let ip = Ipv6Addr::new(0xfe80, 0, 0, 0, 0, 0, 0, 0); assert!(ip.is_unicast_link_local()); let ip = Ipv6Addr::new(0xfe80, 0, 0, 0, 0xffff, 0xffff, 0xffff, 0xffff); assert!(ip.is_unicast_link_local()); let ip = Ipv6Addr::new(0xfe80, 0, 0, 1, 0, 0, 0, 0); assert!(ip.is_unicast_link_local()); assert!(!ip.is_unicast_link_local_strict()); let ip = Ipv6Addr::new(0xfe81, 0, 0, 0, 0, 0, 0, 0); assert!(ip.is_unicast_link_local()); assert!(!ip.is_unicast_link_local_strict());
pub fn is_unicast_site_local(&self) -> bool[src]
Returns true if this is a deprecated unicast site-local address (fec0::/10). The unicast site-local address format is defined in RFC 4291 section 2.5.7 as:
| 10 | | bits | 54 bits | 64 bits | +----------+-------------------------+----------------------------+ |1111111011| subnet ID | interface ID | +----------+-------------------------+----------------------------+
#![feature(ip)]
use std::net::Ipv6Addr;
assert_eq!(
Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_unicast_site_local(),
false
);
assert_eq!(Ipv6Addr::new(0xfec2, 0, 0, 0, 0, 0, 0, 0).is_unicast_site_local(), true);As per RFC 3879, the whole FEC0::/10 prefix is deprecated. New software must not support site-local addresses.
pub fn is_documentation(&self) -> bool[src]
Returns true if this is an address reserved for documentation (2001:db8::/32).
This property is defined in IETF RFC 3849.
#![feature(ip)] use std::net::Ipv6Addr; assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_documentation(), false); assert_eq!(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0).is_documentation(), true);
pub fn is_unicast_global(&self) -> bool[src]
Returns true if the address is a globally routable unicast address.
The following return false:
This method returns true for site-local addresses as per RFC 4291 section 2.5.7
The special behavior of [the site-local unicast] prefix defined in [RFC3513] must no longer be supported in new implementations (i.e., new implementations must treat this prefix as Global Unicast).
#![feature(ip)] use std::net::Ipv6Addr; assert_eq!(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0).is_unicast_global(), false); assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_unicast_global(), true);
pub fn multicast_scope(&self) -> Option<Ipv6MulticastScope>[src]
Returns the address's multicast scope if the address is multicast.
#![feature(ip)]
use std::net::{Ipv6Addr, Ipv6MulticastScope};
assert_eq!(
Ipv6Addr::new(0xff0e, 0, 0, 0, 0, 0, 0, 0).multicast_scope(),
Some(Ipv6MulticastScope::Global)
);
assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).multicast_scope(), None);pub fn is_multicast(&self) -> bool[src]1.7.0
Returns true if this is a multicast address (ff00::/8).
This property is defined by IETF RFC 4291.
use std::net::Ipv6Addr; assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).is_multicast(), true); assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_multicast(), false);
pub fn to_ipv4_mapped(&self) -> Option<Ipv4Addr>[src]
Converts this address to an IPv4 address if it's an "IPv4-mapped IPv6 address" defined in IETF RFC 4291 section 2.5.5.2, otherwise returns None.
::ffff:a.b.c.d becomes a.b.c.d. All addresses not starting with ::ffff will return None.
#![feature(ip)]
use std::net::{Ipv4Addr, Ipv6Addr};
assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).to_ipv4_mapped(), None);
assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).to_ipv4_mapped(),
Some(Ipv4Addr::new(192, 10, 2, 255)));
assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1).to_ipv4_mapped(), None);pub fn to_ipv4(&self) -> Option<Ipv4Addr>[src]
Converts this address to an IPv4 address. Returns None if this address is neither IPv4-compatible or IPv4-mapped.
::a.b.c.d and ::ffff:a.b.c.d become a.b.c.d
use std::net::{Ipv4Addr, Ipv6Addr};
assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).to_ipv4(), None);
assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).to_ipv4(),
Some(Ipv4Addr::new(192, 10, 2, 255)));
assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1).to_ipv4(),
Some(Ipv4Addr::new(0, 0, 0, 1)));pub const fn octets(&self) -> [u8; 16][src]1.12.0
Returns the sixteen eight-bit integers the IPv6 address consists of.
use std::net::Ipv6Addr;
assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).octets(),
[255, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]);impl Clone for Ipv6Addr[src]
impl Copy for Ipv6Addr[src]
impl Debug for Ipv6Addr[src]
impl Display for Ipv6Addr[src]
Write an Ipv6Addr, conforming to the canonical style described by RFC 5952.
impl Eq for Ipv6Addr[src]
impl From<[u16; 8]> for Ipv6Addr[src]1.16.0
fn from(segments: [u16; 8]) -> Ipv6Addr[src]
Creates an Ipv6Addr from an eight element 16-bit array.
use std::net::Ipv6Addr;
let addr = Ipv6Addr::from([
525u16, 524u16, 523u16, 522u16,
521u16, 520u16, 519u16, 518u16,
]);
assert_eq!(
Ipv6Addr::new(
0x20d, 0x20c,
0x20b, 0x20a,
0x209, 0x208,
0x207, 0x206
),
addr
);impl From<[u8; 16]> for Ipv6Addr[src]1.9.0
fn from(octets: [u8; 16]) -> Ipv6Addr[src]
Creates an Ipv6Addr from a sixteen element byte array.
use std::net::Ipv6Addr;
let addr = Ipv6Addr::from([
25u8, 24u8, 23u8, 22u8, 21u8, 20u8, 19u8, 18u8,
17u8, 16u8, 15u8, 14u8, 13u8, 12u8, 11u8, 10u8,
]);
assert_eq!(
Ipv6Addr::new(
0x1918, 0x1716,
0x1514, 0x1312,
0x1110, 0x0f0e,
0x0d0c, 0x0b0a
),
addr
);impl From<Ipv6Addr> for IpAddr[src]1.16.0
fn from(ipv6: Ipv6Addr) -> IpAddr[src]
Copies this address to a new IpAddr::V6.
use std::net::{IpAddr, Ipv6Addr};
let addr = Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff);
assert_eq!(
IpAddr::V6(addr),
IpAddr::from(addr)
);impl From<Ipv6Addr> for u128[src]1.26.0
fn from(ip: Ipv6Addr) -> u128[src]
Convert an Ipv6Addr into a host byte order u128.
use std::net::Ipv6Addr;
let addr = Ipv6Addr::new(
0x1020, 0x3040, 0x5060, 0x7080,
0x90A0, 0xB0C0, 0xD0E0, 0xF00D,
);
assert_eq!(0x102030405060708090A0B0C0D0E0F00D_u128, u128::from(addr));impl From<u128> for Ipv6Addr[src]1.26.0
fn from(ip: u128) -> Ipv6Addr[src]
Convert a host byte order u128 into an Ipv6Addr.
use std::net::Ipv6Addr;
let addr = Ipv6Addr::from(0x102030405060708090A0B0C0D0E0F00D_u128);
assert_eq!(
Ipv6Addr::new(
0x1020, 0x3040, 0x5060, 0x7080,
0x90A0, 0xB0C0, 0xD0E0, 0xF00D,
),
addr);impl FromStr for Ipv6Addr[src]
type Err = AddrParseErrorThe associated error which can be returned from parsing.
fn from_str(s: &str) -> Result<Ipv6Addr, AddrParseError>[src]
impl Hash for Ipv6Addr[src]
fn hash<H: Hasher>(&self, s: &mut H)[src]
fn hash_slice<H>(data: &[Self], state: &mut H) where
H: Hasher, [src]1.3.0
impl Ord for Ipv6Addr[src]
fn cmp(&self, other: &Ipv6Addr) -> Ordering[src]
fn max(self, other: Self) -> Self[src]1.21.0
fn min(self, other: Self) -> Self[src]1.21.0
fn clamp(self, min: Self, max: Self) -> Self[src]
impl PartialEq<IpAddr> for Ipv6Addr[src]1.16.0
impl PartialEq<Ipv6Addr> for Ipv6Addr[src]
impl PartialEq<Ipv6Addr> for IpAddr[src]1.16.0
impl PartialOrd<IpAddr> for Ipv6Addr[src]1.16.0
fn partial_cmp(&self, other: &IpAddr) -> Option<Ordering>[src]
fn lt(&self, other: &Rhs) -> bool[src]
fn le(&self, other: &Rhs) -> bool[src]
fn gt(&self, other: &Rhs) -> bool[src]
fn ge(&self, other: &Rhs) -> bool[src]
impl PartialOrd<Ipv6Addr> for Ipv6Addr[src]
fn partial_cmp(&self, other: &Ipv6Addr) -> Option<Ordering>[src]
fn lt(&self, other: &Rhs) -> bool[src]
fn le(&self, other: &Rhs) -> bool[src]
fn gt(&self, other: &Rhs) -> bool[src]
fn ge(&self, other: &Rhs) -> bool[src]
impl PartialOrd<Ipv6Addr> for IpAddr[src]1.16.0
impl RefUnwindSafe for Ipv6Addrimpl Send for Ipv6Addrimpl Sync for Ipv6Addrimpl Unpin for Ipv6Addrimpl UnwindSafe for Ipv6Addrimpl<T> Any for T where
T: 'static + ?Sized, [src]
impl<T> Borrow<T> for T where
T: ?Sized, [src]
fn borrow(&self) -> &TⓘNotable traits for &'_ mut F
impl<'_, F> Future for &'_ mut F where
F: Unpin + Future + ?Sized,
type Output = <F as Future>::Output;
impl<'_, I> Iterator for &'_ mut I where
I: Iterator + ?Sized,
type Item = <I as Iterator>::Item;
impl<R: Read + ?Sized, '_> Read for &'_ mut R
impl<W: Write + ?Sized, '_> Write for &'_ mut W
[src]
impl<T> BorrowMut<T> for T where
T: ?Sized, [src]
fn borrow_mut(&mut self) -> &mut TⓘNotable traits for &'_ mut F
impl<'_, F> Future for &'_ mut F where
F: Unpin + Future + ?Sized,
type Output = <F as Future>::Output;
impl<'_, I> Iterator for &'_ mut I where
I: Iterator + ?Sized,
type Item = <I as Iterator>::Item;
impl<R: Read + ?Sized, '_> Read for &'_ mut R
impl<W: Write + ?Sized, '_> Write for &'_ mut W
[src]
impl<T> From<T> for T[src]
impl<T, U> Into<U> for T where
U: From<T>, [src]
impl<T> ToOwned for T where
T: Clone, [src]
type Owned = TThe resulting type after obtaining ownership.
fn to_owned(&self) -> T[src]
fn clone_into(&self, target: &mut T)[src]
impl<T> ToString for T where
T: Display + ?Sized, [src]
impl<T, U> TryFrom<U> for T where
U: Into<T>, [src]
type Error = InfallibleThe type returned in the event of a conversion error.
fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>[src]
impl<T, U> TryInto<U> for T where
U: TryFrom<T>, [src]
© 2010 The Rust Project Developers
Licensed under the Apache License, Version 2.0 or the MIT license, at your option.
https://doc.rust-lang.org/std/net/struct.Ipv6Addr.html