Test two objects for inequality.
true
if !(this == that), false otherwise.
Equivalent to x.hashCode
except for boxed numeric types and null
. For numerics, it returns a hash value which is consistent with value equality: if two value type instances compare as true, then ## will produce the same hash value for each of them. For null
returns a hashcode where null.hashCode
throws a NullPointerException
.
a hash value consistent with ==
Test two objects for equality. The expression x == that
is equivalent to if (x eq null) that eq null else x.equals(that)
.
true
if the receiver object is equivalent to the argument; false
otherwise.
Returns the absolute value of this
.
Cast the receiver object to be of type T0
.
Note that the success of a cast at runtime is modulo Scala's erasure semantics. Therefore the expression 1.asInstanceOf[String]
will throw a ClassCastException
at runtime, while the expression List(1).asInstanceOf[List[String]]
will not. In the latter example, because the type argument is erased as part of compilation it is not possible to check whether the contents of the list are of the requested type.
the receiver object.
ClassCastException
if the receiver object is not an instance of the erasure of type T0
.
Result of comparing this
with operand that
.
Implement this method to determine how instances of A will be sorted.
Returns x
where:
x < 0
when this < that
x == 0
when this == that
x > 0
when this > that
Result of comparing this
with operand that
.
Compares the receiver object (this
) with the argument object (that
) for equivalence.
Any implementation of this method should be an equivalence relation:
x
of type Any
, x.equals(x)
should return true
.It is symmetric: for any instances x
and y
of type Any
, x.equals(y)
should return true
if and only if y.equals(x)
returns true
.It is transitive: for any instances x
, y
, and z
of type Any
if x.equals(y)
returns true
and y.equals(z)
returns true
, then x.equals(z)
should return true
. If you override this method, you should verify that your implementation remains an equivalence relation. Additionally, when overriding this method it is usually necessary to override hashCode
to ensure that objects which are "equal" (o1.equals(o2)
returns true
) hash to the same scala.Int. (o1.hashCode.equals(o2.hashCode)
).
true
if the receiver object is equivalent to the argument; false
otherwise.
Returns string formatted according to given format
string. Format strings are as for String.format
(@see java.lang.String.format).
Returns the runtime class representation of the object.
a class object corresponding to the runtime type of the receiver.
Calculate a hash code value for the object.
The default hashing algorithm is platform dependent.
Note that it is allowed for two objects to have identical hash codes (o1.hashCode.equals(o2.hashCode)
) yet not be equal (o1.equals(o2)
returns false
). A degenerate implementation could always return 0
. However, it is required that if two objects are equal (o1.equals(o2)
returns true
) that they have identical hash codes (o1.hashCode.equals(o2.hashCode)
). Therefore, when overriding this method, be sure to verify that the behavior is consistent with the equals
method.
the hash code value for this object.
Test whether the dynamic type of the receiver object is T0
.
Note that the result of the test is modulo Scala's erasure semantics. Therefore the expression 1.isInstanceOf[String]
will return false
, while the expression List(1).isInstanceOf[List[String]]
will return true
. In the latter example, because the type argument is erased as part of compilation it is not possible to check whether the contents of the list are of the specified type.
true
if the receiver object is an instance of erasure of type T0
; false
otherwise.
Returns true
iff this has a zero fractional part, and is within the range of scala.Byte MinValue and MaxValue; otherwise returns false
.
Returns true
iff this has a zero fractional part, and is within the range of scala.Char MinValue and MaxValue; otherwise returns false
.
Returns true
iff this has a zero fractional part, and is within the range of scala.Int MinValue and MaxValue; otherwise returns false
.
Returns true
iff this has a zero fractional part, and is within the range of scala.Short MinValue and MaxValue; otherwise returns false
.
true
if this number has no decimal component, false
otherwise.
Returns this
if this > that
or that
otherwise.
Returns this
if this < that
or that
otherwise.
Returns the signum of this
.
Converts an angle measured in radians to an approximately equivalent angle measured in degrees.
the measurement of the angle x in degrees.
Converts an angle measured in degrees to an approximately equivalent angle measured in radians.
the measurement of the angle x in radians.
Returns a string representation of the object.
The default representation is platform dependent.
a string representation of the object.
(double: any2stringadd[Double]).+(other)
Returns true if this
is less than that
(double: RichDouble).<(that)
Returns true if this
is less than or equal to that
.
(double: RichDouble).<=(that)
Returns true if this
is greater than that
.
(double: RichDouble).>(that)
Returns true if this
is greater than or equal to that
.
(double: RichDouble).>=(that)
(double: java.lang.Double).byteValue()
(double: RichDouble).byteValue()
(double: java.lang.Double).doubleValue()
(double: RichDouble).doubleValue()
The equality method for reference types. Default implementation delegates to eq
.
See also equals
in scala.Any.
true
if the receiver object is equivalent to the argument; false
otherwise.
(double: java.lang.Double).equals(arg0)
(double: java.lang.Double).floatValue()
(double: RichDouble).floatValue()
The hashCode method for reference types. See hashCode in scala.Any.
the hash code value for this object.
(double: java.lang.Double).hashCode()
(double: java.lang.Double).intValue()
(double: RichDouble).intValue()
(double: java.lang.Double).longValue()
(double: RichDouble).longValue()
(double: java.lang.Double).shortValue()
(double: RichDouble).shortValue()
Returns the value of this as a scala.Byte. This may involve rounding or truncation.
(double: RichDouble).toByte
Returns the value of this as a scala.Char. This may involve rounding or truncation.
(double: RichDouble).toChar
Returns the value of this as a scala.Double. This may involve rounding or truncation.
(double: RichDouble).toDouble
Returns the value of this as a scala.Float. This may involve rounding or truncation.
(double: RichDouble).toFloat
Returns the value of this as an scala.Int. This may involve rounding or truncation.
(double: RichDouble).toInt
Returns the value of this as a scala.Long. This may involve rounding or truncation.
(double: RichDouble).toLong
Returns the value of this as a scala.Short. This may involve rounding or truncation.
(double: RichDouble).toShort
Creates a String representation of this object. The default representation is platform dependent. On the java platform it is the concatenation of the class name, "@", and the object's hashcode in hexadecimal.
a String representation of the object.
(double: java.lang.Double).toString()
Returns a string representation of the object.
The default representation is platform dependent.
a string representation of the object.
(double: RichDouble).toString()
© 2002-2019 EPFL, with contributions from Lightbend.
Licensed under the Apache License, Version 2.0.
https://www.scala-lang.org/api/2.12.9/scala/Double.html
Double
, a 64-bit IEEE-754 floating point number (equivalent to Java'sdouble
primitive type) is a subtype of scala.AnyVal. Instances ofDouble
are not represented by an object in the underlying runtime system.There is an implicit conversion from scala.Double => scala.runtime.RichDouble which provides useful non-primitive operations.