skimage.exposure.histogram (image[, nbins]) | Return histogram of image. |
skimage.exposure.equalize_hist (image[, …]) | Return image after histogram equalization. |
skimage.exposure.equalize_adapthist (image[, …]) | Contrast Limited Adaptive Histogram Equalization (CLAHE). |
skimage.exposure.rescale_intensity (image[, …]) | Return image after stretching or shrinking its intensity levels. |
skimage.exposure.cumulative_distribution (image) | Return cumulative distribution function (cdf) for the given image. |
skimage.exposure.adjust_gamma (image[, …]) | Performs Gamma Correction on the input image. |
skimage.exposure.adjust_sigmoid (image[, …]) | Performs Sigmoid Correction on the input image. |
skimage.exposure.adjust_log (image[, gain, inv]) | Performs Logarithmic correction on the input image. |
skimage.exposure.is_low_contrast (image[, …]) | Detemine if an image is low contrast. |
skimage.exposure.histogram(image, nbins=256)
[source]
Return histogram of image.
Unlike numpy.histogram
, this function returns the centers of bins and does not rebin integer arrays. For integer arrays, each integer value has its own bin, which improves speed and intensity-resolution.
The histogram is computed on the flattened image: for color images, the function should be used separately on each channel to obtain a histogram for each color channel.
Parameters: |
|
---|---|
Returns: |
|
See also
>>> from skimage import data, exposure, img_as_float >>> image = img_as_float(data.camera()) >>> np.histogram(image, bins=2) (array([107432, 154712]), array([ 0. , 0.5, 1. ])) >>> exposure.histogram(image, nbins=2) (array([107432, 154712]), array([ 0.25, 0.75]))
skimage.exposure.equalize_hist(image, nbins=256, mask=None)
[source]
Return image after histogram equalization.
Parameters: |
|
---|---|
Returns: |
|
This function is adapted from [1] with the author’s permission.
[1] | (1, 2) http://www.janeriksolem.net/2009/06/histogram-equalization-with-python-and.html |
[2] | http://en.wikipedia.org/wiki/Histogram_equalization |
skimage.exposure.equalize_adapthist(image, kernel_size=None, clip_limit=0.01, nbins=256)
[source]
Contrast Limited Adaptive Histogram Equalization (CLAHE).
An algorithm for local contrast enhancement, that uses histograms computed over different tile regions of the image. Local details can therefore be enhanced even in regions that are darker or lighter than most of the image.
Parameters: |
|
---|---|
Returns: |
|
See also
[1] | http://tog.acm.org/resources/GraphicsGems/ |
[2] | https://en.wikipedia.org/wiki/CLAHE#CLAHE |
skimage.exposure.rescale_intensity(image, in_range='image', out_range='dtype')
[source]
Return image after stretching or shrinking its intensity levels.
The desired intensity range of the input and output, in_range
and out_range
respectively, are used to stretch or shrink the intensity range of the input image. See examples below.
Parameters: |
|
---|---|
Returns: |
|
See also
By default, the min/max intensities of the input image are stretched to the limits allowed by the image’s dtype, since in_range
defaults to ‘image’ and out_range
defaults to ‘dtype’:
>>> image = np.array([51, 102, 153], dtype=np.uint8) >>> rescale_intensity(image) array([ 0, 127, 255], dtype=uint8)
It’s easy to accidentally convert an image dtype from uint8 to float:
>>> 1.0 * image array([ 51., 102., 153.])
Use rescale_intensity
to rescale to the proper range for float dtypes:
>>> image_float = 1.0 * image >>> rescale_intensity(image_float) array([ 0. , 0.5, 1. ])
To maintain the low contrast of the original, use the in_range
parameter:
>>> rescale_intensity(image_float, in_range=(0, 255)) array([ 0.2, 0.4, 0.6])
If the min/max value of in_range
is more/less than the min/max image intensity, then the intensity levels are clipped:
>>> rescale_intensity(image_float, in_range=(0, 102)) array([ 0.5, 1. , 1. ])
If you have an image with signed integers but want to rescale the image to just the positive range, use the out_range
parameter:
>>> image = np.array([-10, 0, 10], dtype=np.int8) >>> rescale_intensity(image, out_range=(0, 127)) array([ 0, 63, 127], dtype=int8)
skimage.exposure.cumulative_distribution(image, nbins=256)
[source]
Return cumulative distribution function (cdf) for the given image.
Parameters: |
|
---|---|
Returns: |
|
See also
[1] | http://en.wikipedia.org/wiki/Cumulative_distribution_function |
>>> from skimage import data, exposure, img_as_float >>> image = img_as_float(data.camera()) >>> hi = exposure.histogram(image) >>> cdf = exposure.cumulative_distribution(image) >>> np.alltrue(cdf[0] == np.cumsum(hi[0])/float(image.size)) True
skimage.exposure.adjust_gamma(image, gamma=1, gain=1)
[source]
Performs Gamma Correction on the input image.
Also known as Power Law Transform. This function transforms the input image pixelwise according to the equation O = I**gamma
after scaling each pixel to the range 0 to 1.
Parameters: |
|
---|---|
Returns: |
|
See also
For gamma greater than 1, the histogram will shift towards left and the output image will be darker than the input image.
For gamma less than 1, the histogram will shift towards right and the output image will be brighter than the input image.
[1] | http://en.wikipedia.org/wiki/Gamma_correction |
>>> from skimage import data, exposure, img_as_float >>> image = img_as_float(data.moon()) >>> gamma_corrected = exposure.adjust_gamma(image, 2) >>> # Output is darker for gamma > 1 >>> image.mean() > gamma_corrected.mean() True
skimage.exposure.adjust_sigmoid(image, cutoff=0.5, gain=10, inv=False)
[source]
Performs Sigmoid Correction on the input image.
Also known as Contrast Adjustment. This function transforms the input image pixelwise according to the equation O = 1/(1 + exp*(gain*(cutoff - I)))
after scaling each pixel to the range 0 to 1.
Parameters: |
|
---|---|
Returns: |
|
See also
[1] | Gustav J. Braun, “Image Lightness Rescaling Using Sigmoidal Contrast Enhancement Functions”, http://www.cis.rit.edu/fairchild/PDFs/PAP07.pdf |
skimage.exposure.adjust_log(image, gain=1, inv=False)
[source]
Performs Logarithmic correction on the input image.
This function transforms the input image pixelwise according to the equation O = gain*log(1 + I)
after scaling each pixel to the range 0 to 1. For inverse logarithmic correction, the equation is O = gain*(2**I - 1)
.
Parameters: |
|
---|---|
Returns: |
|
See also
[1] | http://www.ece.ucsb.edu/Faculty/Manjunath/courses/ece178W03/EnhancePart1.pdf |
skimage.exposure.is_low_contrast(image, fraction_threshold=0.05, lower_percentile=1, upper_percentile=99, method='linear')
[source]
Detemine if an image is low contrast.
Parameters: |
|
---|---|
Returns: |
|
[1] | (1, 2) http://scikit-image.org/docs/dev/user_guide/data_types.html |
>>> image = np.linspace(0, 0.04, 100) >>> is_low_contrast(image) True >>> image[-1] = 1 >>> is_low_contrast(image) True >>> is_low_contrast(image, upper_percentile=100) False
© 2011 the scikit-image team
Licensed under the BSD 3-clause License.
http://scikit-image.org/docs/0.14.x/api/skimage.exposure.html