Note
Click here to download the full example code
The usual covariance maximum likelihood estimate is very sensitive to the presence of outliers in the data set. In such a case, it would be better to use a robust estimator of covariance to guarantee that the estimation is resistant to “erroneous” observations in the data set.
The Minimum Covariance Determinant estimator is a robust, high-breakdown point (i.e. it can be used to estimate the covariance matrix of highly contaminated datasets, up to \(\frac{n_\text{samples} - n_\text{features}-1}{2}\) outliers) estimator of covariance. The idea is to find \(\frac{n_\text{samples} + n_\text{features}+1}{2}\) observations whose empirical covariance has the smallest determinant, yielding a “pure” subset of observations from which to compute standards estimates of location and covariance. After a correction step aiming at compensating the fact that the estimates were learned from only a portion of the initial data, we end up with robust estimates of the data set location and covariance.
The Minimum Covariance Determinant estimator (MCD) has been introduced by P.J.Rousseuw in [1].
In this example, we compare the estimation errors that are made when using various types of location and covariance estimates on contaminated Gaussian distributed data sets:
[1] | P. J. Rousseeuw. Least median of squares regression. Journal of American Statistical Ass., 79:871, 1984. |
[2] | Johanna Hardin, David M Rocke. The distribution of robust distances. Journal of Computational and Graphical Statistics. December 1, 2005, 14(4): 928-946. |
[3] | Zoubir A., Koivunen V., Chakhchoukh Y. and Muma M. (2012). Robust estimation in signal processing: A tutorial-style treatment of fundamental concepts. IEEE Signal Processing Magazine 29(4), 61-80. |
print(__doc__) import numpy as np import matplotlib.pyplot as plt import matplotlib.font_manager from sklearn.covariance import EmpiricalCovariance, MinCovDet # example settings n_samples = 80 n_features = 5 repeat = 10 range_n_outliers = np.concatenate( (np.linspace(0, n_samples / 8, 5), np.linspace(n_samples / 8, n_samples / 2, 5)[1:-1])).astype(np.int) # definition of arrays to store results err_loc_mcd = np.zeros((range_n_outliers.size, repeat)) err_cov_mcd = np.zeros((range_n_outliers.size, repeat)) err_loc_emp_full = np.zeros((range_n_outliers.size, repeat)) err_cov_emp_full = np.zeros((range_n_outliers.size, repeat)) err_loc_emp_pure = np.zeros((range_n_outliers.size, repeat)) err_cov_emp_pure = np.zeros((range_n_outliers.size, repeat)) # computation for i, n_outliers in enumerate(range_n_outliers): for j in range(repeat): rng = np.random.RandomState(i * j) # generate data X = rng.randn(n_samples, n_features) # add some outliers outliers_index = rng.permutation(n_samples)[:n_outliers] outliers_offset = 10. * \ (np.random.randint(2, size=(n_outliers, n_features)) - 0.5) X[outliers_index] += outliers_offset inliers_mask = np.ones(n_samples).astype(bool) inliers_mask[outliers_index] = False # fit a Minimum Covariance Determinant (MCD) robust estimator to data mcd = MinCovDet().fit(X) # compare raw robust estimates with the true location and covariance err_loc_mcd[i, j] = np.sum(mcd.location_ ** 2) err_cov_mcd[i, j] = mcd.error_norm(np.eye(n_features)) # compare estimators learned from the full data set with true # parameters err_loc_emp_full[i, j] = np.sum(X.mean(0) ** 2) err_cov_emp_full[i, j] = EmpiricalCovariance().fit(X).error_norm( np.eye(n_features)) # compare with an empirical covariance learned from a pure data set # (i.e. "perfect" mcd) pure_X = X[inliers_mask] pure_location = pure_X.mean(0) pure_emp_cov = EmpiricalCovariance().fit(pure_X) err_loc_emp_pure[i, j] = np.sum(pure_location ** 2) err_cov_emp_pure[i, j] = pure_emp_cov.error_norm(np.eye(n_features)) # Display results font_prop = matplotlib.font_manager.FontProperties(size=11) plt.subplot(2, 1, 1) lw = 2 plt.errorbar(range_n_outliers, err_loc_mcd.mean(1), yerr=err_loc_mcd.std(1) / np.sqrt(repeat), label="Robust location", lw=lw, color='m') plt.errorbar(range_n_outliers, err_loc_emp_full.mean(1), yerr=err_loc_emp_full.std(1) / np.sqrt(repeat), label="Full data set mean", lw=lw, color='green') plt.errorbar(range_n_outliers, err_loc_emp_pure.mean(1), yerr=err_loc_emp_pure.std(1) / np.sqrt(repeat), label="Pure data set mean", lw=lw, color='black') plt.title("Influence of outliers on the location estimation") plt.ylabel(r"Error ($||\mu - \hat{\mu}||_2^2$)") plt.legend(loc="upper left", prop=font_prop) plt.subplot(2, 1, 2) x_size = range_n_outliers.size plt.errorbar(range_n_outliers, err_cov_mcd.mean(1), yerr=err_cov_mcd.std(1), label="Robust covariance (mcd)", color='m') plt.errorbar(range_n_outliers[:(x_size // 5 + 1)], err_cov_emp_full.mean(1)[:(x_size // 5 + 1)], yerr=err_cov_emp_full.std(1)[:(x_size // 5 + 1)], label="Full data set empirical covariance", color='green') plt.plot(range_n_outliers[(x_size // 5):(x_size // 2 - 1)], err_cov_emp_full.mean(1)[(x_size // 5):(x_size // 2 - 1)], color='green', ls='--') plt.errorbar(range_n_outliers, err_cov_emp_pure.mean(1), yerr=err_cov_emp_pure.std(1), label="Pure data set empirical covariance", color='black') plt.title("Influence of outliers on the covariance estimation") plt.xlabel("Amount of contamination (%)") plt.ylabel("RMSE") plt.legend(loc="upper center", prop=font_prop) plt.show()
Total running time of the script: ( 0 minutes 3.829 seconds)
Gallery generated by Sphinx-Gallery
© 2007–2018 The scikit-learn developers
Licensed under the 3-clause BSD License.
http://scikit-learn.org/stable/auto_examples/covariance/plot_robust_vs_empirical_covariance.html