sklearn.config_context(**new_config) [source]

Context manager for global scikit-learn configuration

assume_finite : bool, optional

If True, validation for finiteness will be skipped, saving time, but leading to potential crashes. If False, validation for finiteness will be performed, avoiding error. Global default: False.

working_memory : int, optional

If set, scikit-learn will attempt to limit the size of temporary arrays to this number of MiB (per job when parallelised), often saving both computation time and memory on expensive operations that can be performed in chunks. Global default: 1024.


All settings, not just those presently modified, will be returned to their previous values when the context manager is exited. This is not thread-safe.


>>> import sklearn
>>> from sklearn.utils.validation import assert_all_finite
>>> with sklearn.config_context(assume_finite=True):
...     assert_all_finite([float('nan')])
>>> with sklearn.config_context(assume_finite=True):
...     with sklearn.config_context(assume_finite=False):
...         assert_all_finite([float('nan')])
Traceback (most recent call last):
ValueError: Input contains NaN, ...

© 2007–2018 The scikit-learn developers
Licensed under the 3-clause BSD License.