sklearn.decomposition.dict_learning
-
sklearn.decomposition.dict_learning(X, n_components, alpha, max_iter=100, tol=1e-08, method=’lars’, n_jobs=None, dict_init=None, code_init=None, callback=None, verbose=False, random_state=None, return_n_iter=False, positive_dict=False, positive_code=False)
[source]
-
Solves a dictionary learning matrix factorization problem.
Finds the best dictionary and the corresponding sparse code for approximating the data matrix X by solving:
(U^*, V^*) = argmin 0.5 || X - U V ||_2^2 + alpha * || U ||_1
(U,V)
with || V_k ||_2 = 1 for all 0 <= k < n_components
where V is the dictionary and U is the sparse code.
Read more in the User Guide.
Parameters: |
-
X : array of shape (n_samples, n_features) -
Data matrix. -
n_components : int, -
Number of dictionary atoms to extract. -
alpha : int, -
Sparsity controlling parameter. -
max_iter : int, -
Maximum number of iterations to perform. -
tol : float, -
Tolerance for the stopping condition. -
method : {‘lars’, ‘cd’} -
lars: uses the least angle regression method to solve the lasso problem (linear_model.lars_path) cd: uses the coordinate descent method to compute the Lasso solution (linear_model.Lasso). Lars will be faster if the estimated components are sparse. -
n_jobs : int or None, optional (default=None) -
Number of parallel jobs to run. None means 1 unless in a joblib.parallel_backend context. -1 means using all processors. See Glossary for more details. -
dict_init : array of shape (n_components, n_features), -
Initial value for the dictionary for warm restart scenarios. -
code_init : array of shape (n_samples, n_components), -
Initial value for the sparse code for warm restart scenarios. -
callback : callable or None, optional (default: None) -
Callable that gets invoked every five iterations -
verbose : bool, optional (default: False) -
To control the verbosity of the procedure. -
random_state : int, RandomState instance or None, optional (default=None) -
If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by np.random . -
return_n_iter : bool -
Whether or not to return the number of iterations. -
positive_dict : bool -
Whether to enforce positivity when finding the dictionary. -
positive_code : bool -
Whether to enforce positivity when finding the code. |
Returns: |
-
code : array of shape (n_samples, n_components) -
The sparse code factor in the matrix factorization. -
dictionary : array of shape (n_components, n_features), -
The dictionary factor in the matrix factorization. -
errors : array -
Vector of errors at each iteration. -
n_iter : int -
Number of iterations run. Returned only if return_n_iter is set to True. |