class statsmodels.discrete.discrete_model.Probit(endog, exog, **kwargs)
[source]
Binary choice Probit model
Parameters: |
|
---|
endog
array – A reference to the endogenous response variable
exog
array – A reference to the exogenous design.
cdf (X) | Probit (Normal) cumulative distribution function |
cov_params_func_l1 (likelihood_model, xopt, …) | Computes cov_params on a reduced parameter space corresponding to the nonzero parameters resulting from the l1 regularized fit. |
fit ([start_params, method, maxiter, …]) | Fit the model using maximum likelihood. |
fit_regularized ([start_params, method, …]) | Fit the model using a regularized maximum likelihood. |
from_formula (formula, data[, subset, drop_cols]) | Create a Model from a formula and dataframe. |
hessian (params) | Probit model Hessian matrix of the log-likelihood |
information (params) | Fisher information matrix of model |
initialize () | Initialize is called by statsmodels.model.LikelihoodModel.__init__ and should contain any preprocessing that needs to be done for a model. |
loglike (params) | Log-likelihood of probit model (i.e., the normal distribution). |
loglikeobs (params) | Log-likelihood of probit model for each observation |
pdf (X) | Probit (Normal) probability density function |
predict (params[, exog, linear]) | Predict response variable of a model given exogenous variables. |
score (params) | Probit model score (gradient) vector |
score_obs (params) | Probit model Jacobian for each observation |
endog_names | Names of endogenous variables |
exog_names | Names of exogenous variables |
© 2009–2012 Statsmodels Developers
© 2006–2008 Scipy Developers
© 2006 Jonathan E. Taylor
Licensed under the 3-clause BSD License.
http://www.statsmodels.org/stable/generated/statsmodels.discrete.discrete_model.Probit.html