class statsmodels.regression.mixed_linear_model.MixedLMResults(model, params, cov_params) [source]
Class to contain results of fitting a linear mixed effects model.
MixedLMResults inherits from statsmodels.LikelihoodModelResults
| Parameters: | statsmodels.LikelihoodModelResults (See) – | 
|---|---|
| Returns: | 
 | 
See also
statsmodels.LikelihoodModelResults
| aic() | |
| bic() | |
| bootstrap([nrep, method, disp, store]) | simple bootstrap to get mean and variance of estimator | 
| bse() | |
| bse_fe() | Returns the standard errors of the fixed effect regression coefficients. | 
| bse_re() | Returns the standard errors of the variance parameters. | 
| bsejac() | standard deviation of parameter estimates based on covjac | 
| bsejhj() | standard deviation of parameter estimates based on covHJH | 
| conf_int([alpha, cols, method]) | Returns the confidence interval of the fitted parameters. | 
| cov_params([r_matrix, column, scale, cov_p, …]) | Returns the variance/covariance matrix. | 
| covjac() | covariance of parameters based on outer product of jacobian of log-likelihood | 
| covjhj() | covariance of parameters based on HJJH | 
| df_modelwc() | |
| f_test(r_matrix[, cov_p, scale, invcov]) | Compute the F-test for a joint linear hypothesis. | 
| fittedvalues() | Returns the fitted values for the model. | 
| get_nlfun(fun) | |
| hessv() | cached Hessian of log-likelihood | 
| initialize(model, params, **kwd) | |
| llf() | |
| load(fname) | load a pickle, (class method) | 
| normalized_cov_params() | |
| predict([exog, transform]) | Call self.model.predict with self.params as the first argument. | 
| profile_re(re_ix, vtype[, num_low, …]) | Profile-likelihood inference for variance parameters. | 
| pvalues() | |
| random_effects() | The conditional means of random effects given the data. | 
| random_effects_cov() | Returns the conditional covariance matrix of the random effects for each group given the data. | 
| remove_data() | remove data arrays, all nobs arrays from result and model | 
| resid() | Returns the residuals for the model. | 
| save(fname[, remove_data]) | save a pickle of this instance | 
| score_obsv() | cached Jacobian of log-likelihood | 
| summary([yname, xname_fe, xname_re, title, …]) | Summarize the mixed model regression results. | 
| t_test(r_matrix[, scale, use_t]) | Compute a t-test for a each linear hypothesis of the form Rb = q | 
| t_test_pairwise(term_name[, method, alpha, …]) | perform pairwise t_test with multiple testing corrected p-values | 
| tvalues() | Return the t-statistic for a given parameter estimate. | 
| wald_test(r_matrix[, cov_p, scale, invcov, …]) | Compute a Wald-test for a joint linear hypothesis. | 
| wald_test_terms([skip_single, …]) | Compute a sequence of Wald tests for terms over multiple columns | 
| use_t | 
    © 2009–2012 Statsmodels Developers
© 2006–2008 Scipy Developers
© 2006 Jonathan E. Taylor
Licensed under the 3-clause BSD License.
    http://www.statsmodels.org/stable/generated/statsmodels.regression.mixed_linear_model.MixedLMResults.html