Robust linear models with support for the M-estimators listed under Norms.
See Module Reference for commands and arguments.
# Load modules and data In [1]: import statsmodels.api as sm In [2]: data = sm.datasets.stackloss.load() In [3]: data.exog = sm.add_constant(data.exog) # Fit model and print summary In [4]: rlm_model = sm.RLM(data.endog, data.exog, M=sm.robust.norms.HuberT()) In [5]: rlm_results = rlm_model.fit() In [6]: print(rlm_results.params) [-41.0265 0.8294 0.9261 -0.1278]
Detailed examples can be found here:
RLM (endog, exog[, M, missing]) | Robust Linear Models |
RLMResults (model, params, …) | Class to contain RLM results |
AndrewWave ([a]) | Andrew’s wave for M estimation. |
Hampel ([a, b, c]) | Hampel function for M-estimation. |
HuberT ([t]) | Huber’s T for M estimation. |
LeastSquares | Least squares rho for M-estimation and its derived functions. |
RamsayE ([a]) | Ramsay’s Ea for M estimation. |
RobustNorm | The parent class for the norms used for robust regression. |
TrimmedMean ([c]) | Trimmed mean function for M-estimation. |
TukeyBiweight ([c]) | Tukey’s biweight function for M-estimation. |
estimate_location (a, scale[, norm, axis, …]) | M-estimator of location using self.norm and a current estimator of scale. |
Huber ([c, tol, maxiter, norm]) | Huber’s proposal 2 for estimating location and scale jointly. |
HuberScale ([d, tol, maxiter]) | Huber’s scaling for fitting robust linear models. |
mad (a[, c, axis, center]) | The Median Absolute Deviation along given axis of an array |
hubers_scale | Huber’s scaling for fitting robust linear models. |
© 2009–2012 Statsmodels Developers
© 2006–2008 Scipy Developers
© 2006 Jonathan E. Taylor
Licensed under the 3-clause BSD License.
http://www.statsmodels.org/stable/rlm.html