#include <training_ops.h>
Update '*var' according to the adagrad scheme.
accum += grad * grad var -= lr * grad * (1 / sqrt(accum))
Arguments:
Optional attributes (see Attrs
):
True
, updating of the var and accum tensors will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention.Returns:
Output
: Same as "var". Constructors and Destructors | |
---|---|
ApplyAdagrad(const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input accum, ::tensorflow::Input lr, ::tensorflow::Input grad) | |
ApplyAdagrad(const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input accum, ::tensorflow::Input lr, ::tensorflow::Input grad, const ApplyAdagrad::Attrs & attrs) |
Public attributes | |
---|---|
operation | |
out |
Public functions | |
---|---|
node() const | ::tensorflow::Node * |
operator::tensorflow::Input() const | |
operator::tensorflow::Output() const |
Public static functions | |
---|---|
UpdateSlots(bool x) | |
UseLocking(bool x) |
Structs | |
---|---|
tensorflow::ops::ApplyAdagrad::Attrs | Optional attribute setters for ApplyAdagrad. |
Operation operation
::tensorflow::Output out
ApplyAdagrad( const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input accum, ::tensorflow::Input lr, ::tensorflow::Input grad )
ApplyAdagrad( const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input accum, ::tensorflow::Input lr, ::tensorflow::Input grad, const ApplyAdagrad::Attrs & attrs )
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operator::tensorflow::Output() const
Attrs UpdateSlots( bool x )
Attrs UseLocking( bool x )
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 4.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/cc/class/tensorflow/ops/apply-adagrad