W3cubDocs

/TensorFlow C++ 2.4

tensorflow::ops::ResourceApplyCenteredRMSProp

#include <training_ops.h>

Update '*var' according to the centered RMSProp algorithm.

Summary

The centered RMSProp algorithm uses an estimate of the centered second moment (i.e., the variance) for normalization, as opposed to regular RMSProp, which uses the (uncentered) second moment. This often helps with training, but is slightly more expensive in terms of computation and memory.

Note that in dense implementation of this algorithm, mg, ms, and mom will update even if the grad is zero, but in this sparse implementation, mg, ms, and mom will not update in iterations during which the grad is zero.

mean_square = decay * mean_square + (1-decay) * gradient ** 2 mean_grad = decay * mean_grad + (1-decay) * gradient

Delta = learning_rate * gradient / sqrt(mean_square + epsilon - mean_grad ** 2)

mg

Arguments:

  • scope: A Scope object
  • var: Should be from a Variable().
  • mg: Should be from a Variable().
  • ms: Should be from a Variable().
  • mom: Should be from a Variable().
  • lr: Scaling factor. Must be a scalar.
  • rho: Decay rate. Must be a scalar.
  • momentum: Momentum Scale. Must be a scalar.
  • epsilon: Ridge term. Must be a scalar.
  • grad: The gradient.

Optional attributes (see Attrs):

  • use_locking: If True, updating of the var, mg, ms, and mom tensors is protected by a lock; otherwise the behavior is undefined, but may exhibit less contention.

Returns:

Constructors and Destructors
ResourceApplyCenteredRMSProp(const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input mg, ::tensorflow::Input ms, ::tensorflow::Input mom, ::tensorflow::Input lr, ::tensorflow::Input rho, ::tensorflow::Input momentum, ::tensorflow::Input epsilon, ::tensorflow::Input grad)
ResourceApplyCenteredRMSProp(const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input mg, ::tensorflow::Input ms, ::tensorflow::Input mom, ::tensorflow::Input lr, ::tensorflow::Input rho, ::tensorflow::Input momentum, ::tensorflow::Input epsilon, ::tensorflow::Input grad, const ResourceApplyCenteredRMSProp::Attrs & attrs)
Public attributes
operation
Public functions
operator::tensorflow::Operation() const
Public static functions
UseLocking(bool x)
Structs
tensorflow::ops::ResourceApplyCenteredRMSProp::Attrs

Optional attribute setters for ResourceApplyCenteredRMSProp.

Public attributes

operation

Operation operation

Public functions

ResourceApplyCenteredRMSProp

 ResourceApplyCenteredRMSProp(
  const ::tensorflow::Scope & scope,
  ::tensorflow::Input var,
  ::tensorflow::Input mg,
  ::tensorflow::Input ms,
  ::tensorflow::Input mom,
  ::tensorflow::Input lr,
  ::tensorflow::Input rho,
  ::tensorflow::Input momentum,
  ::tensorflow::Input epsilon,
  ::tensorflow::Input grad
)

ResourceApplyCenteredRMSProp

 ResourceApplyCenteredRMSProp(
  const ::tensorflow::Scope & scope,
  ::tensorflow::Input var,
  ::tensorflow::Input mg,
  ::tensorflow::Input ms,
  ::tensorflow::Input mom,
  ::tensorflow::Input lr,
  ::tensorflow::Input rho,
  ::tensorflow::Input momentum,
  ::tensorflow::Input epsilon,
  ::tensorflow::Input grad,
  const ResourceApplyCenteredRMSProp::Attrs & attrs
)

operator::tensorflow::Operation

operator::tensorflow::Operation() const 

Public static functions

UseLocking

Attrs UseLocking(
  bool x
)

© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 4.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/cc/class/tensorflow/ops/resource-apply-centered-r-m-s-prop