#include <training_ops.h>
Update '*var' according to the centered RMSProp algorithm.
The centered RMSProp algorithm uses an estimate of the centered second moment (i.e., the variance) for normalization, as opposed to regular RMSProp, which uses the (uncentered) second moment. This often helps with training, but is slightly more expensive in terms of computation and memory.
Note that in dense implementation of this algorithm, mg, ms, and mom will update even if the grad is zero, but in this sparse implementation, mg, ms, and mom will not update in iterations during which the grad is zero.
mean_square = decay * mean_square + (1-decay) * gradient ** 2 mean_grad = decay * mean_grad + (1-decay) * gradient Delta = learning_rate * gradient / sqrt(mean_square + epsilon - mean_grad ** 2)
Arguments:
Optional attributes (see Attrs
):
True
, updating of the var, mg, ms, and mom tensors is protected by a lock; otherwise the behavior is undefined, but may exhibit less contention.Returns:
Output
: Same as "var". Constructors and Destructors | |
---|---|
SparseApplyCenteredRMSProp(const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input mg, ::tensorflow::Input ms, ::tensorflow::Input mom, ::tensorflow::Input lr, ::tensorflow::Input rho, ::tensorflow::Input momentum, ::tensorflow::Input epsilon, ::tensorflow::Input grad, ::tensorflow::Input indices) | |
SparseApplyCenteredRMSProp(const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input mg, ::tensorflow::Input ms, ::tensorflow::Input mom, ::tensorflow::Input lr, ::tensorflow::Input rho, ::tensorflow::Input momentum, ::tensorflow::Input epsilon, ::tensorflow::Input grad, ::tensorflow::Input indices, const SparseApplyCenteredRMSProp::Attrs & attrs) |
Public attributes | |
---|---|
operation | |
out |
Public functions | |
---|---|
node() const | ::tensorflow::Node * |
operator::tensorflow::Input() const | |
operator::tensorflow::Output() const |
Public static functions | |
---|---|
UseLocking(bool x) |
Structs | |
---|---|
tensorflow::ops::SparseApplyCenteredRMSProp::Attrs | Optional attribute setters for SparseApplyCenteredRMSProp. |
Operation operation
::tensorflow::Output out
SparseApplyCenteredRMSProp( const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input mg, ::tensorflow::Input ms, ::tensorflow::Input mom, ::tensorflow::Input lr, ::tensorflow::Input rho, ::tensorflow::Input momentum, ::tensorflow::Input epsilon, ::tensorflow::Input grad, ::tensorflow::Input indices )
SparseApplyCenteredRMSProp( const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input mg, ::tensorflow::Input ms, ::tensorflow::Input mom, ::tensorflow::Input lr, ::tensorflow::Input rho, ::tensorflow::Input momentum, ::tensorflow::Input epsilon, ::tensorflow::Input grad, ::tensorflow::Input indices, const SparseApplyCenteredRMSProp::Attrs & attrs )
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operator::tensorflow::Output() const
Attrs UseLocking( bool x )
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2021-01-21 UTC.
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 4.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/cc/class/tensorflow/ops/sparse-apply-centered-r-m-s-prop