Represents a potentially large set of elements.
Inherits From: CheckpointableBase
tf.compat.v2.data.Dataset( variant_tensor )
A Dataset
can be used to represent an input pipeline as a collection of elements and a "logical plan" of transformations that act on those elements.
A dataset contains elements that each have the same (nested) structure and the individual components of the structure can be of any type representable by tf.TypeSpec
, including tf.Tensor
, tf.data.Dataset
, tf.SparseTensor
, tf.RaggedTensor
, or tf.TensorArray
.
# Integer element a = 1 # Float element b = 2.0 # Tuple element with 2 components c = (1, 2) # Dict element with 3 components d = {"a": (2, 2), "b": 3} # Element containing a dataset e = tf.data.Dataset.from_element(10)
Args | |
---|---|
variant_tensor | A DT_VARIANT tensor that represents the dataset. |
Attributes | |
---|---|
element_spec | The type specification of an element of this dataset. |
apply
apply( transformation_func )
Applies a transformation function to this dataset.
apply
enables chaining of custom Dataset
transformations, which are represented as functions that take one Dataset
argument and return a transformed Dataset
.
dataset = (dataset.map(lambda x: x ** 2) .apply(group_by_window(key_func, reduce_func, window_size)) .map(lambda x: x ** 3))
Args | |
---|---|
transformation_func | A function that takes one Dataset argument and returns a Dataset . |
Returns | |
---|---|
Dataset | The Dataset returned by applying transformation_func to this dataset. |
batch
batch( batch_size, drop_remainder=False )
Combines consecutive elements of this dataset into batches.
The components of the resulting element will have an additional outer dimension, which will be batch_size
(or N % batch_size
for the last element if batch_size
does not divide the number of input elements N
evenly and drop_remainder
is False
). If your program depends on the batches having the same outer dimension, you should set the drop_remainder
argument to True
to prevent the smaller batch from being produced.
Args | |
---|---|
batch_size | A tf.int64 scalar tf.Tensor , representing the number of consecutive elements of this dataset to combine in a single batch. |
drop_remainder | (Optional.) A tf.bool scalar tf.Tensor , representing whether the last batch should be dropped in the case it has fewer than batch_size elements; the default behavior is not to drop the smaller batch. |
Returns | |
---|---|
Dataset | A Dataset . |
cache
cache( filename='' )
Caches the elements in this dataset.
Args | |
---|---|
filename | A tf.string scalar tf.Tensor , representing the name of a directory on the filesystem to use for caching elements in this Dataset. If a filename is not provided, the dataset will be cached in memory. |
Returns | |
---|---|
Dataset | A Dataset . |
concatenate
concatenate( dataset )
Creates a Dataset
by concatenating the given dataset with this dataset.
a = Dataset.range(1, 4) # ==> [ 1, 2, 3 ] b = Dataset.range(4, 8) # ==> [ 4, 5, 6, 7 ] # The input dataset and dataset to be concatenated should have the same # nested structures and output types. # c = Dataset.range(8, 14).batch(2) # ==> [ [8, 9], [10, 11], [12, 13] ] # d = Dataset.from_tensor_slices([14.0, 15.0, 16.0]) # a.concatenate(c) and a.concatenate(d) would result in error. a.concatenate(b) # ==> [ 1, 2, 3, 4, 5, 6, 7 ]
Args | |
---|---|
dataset | Dataset to be concatenated. |
Returns | |
---|---|
Dataset | A Dataset . |
enumerate
enumerate( start=0 )
Enumerates the elements of this dataset.
It is similar to python's enumerate
.
# NOTE: The following examples use `{ ... }` to represent the # contents of a dataset. a = { 1, 2, 3 } b = { (7, 8), (9, 10) } # The nested structure of the `datasets` argument determines the # structure of elements in the resulting dataset. a.enumerate(start=5)) == { (5, 1), (6, 2), (7, 3) } b.enumerate() == { (0, (7, 8)), (1, (9, 10)) }
Args | |
---|---|
start | A tf.int64 scalar tf.Tensor , representing the start value for enumeration. |
Returns | |
---|---|
Dataset | A Dataset . |
filter
filter( predicate )
Filters this dataset according to predicate
.
d = tf.data.Dataset.from_tensor_slices([1, 2, 3]) d = d.filter(lambda x: x < 3) # ==> [1, 2] # `tf.math.equal(x, y)` is required for equality comparison def filter_fn(x): return tf.math.equal(x, 1) d = d.filter(filter_fn) # ==> [1]
Args | |
---|---|
predicate | A function mapping a dataset element to a boolean. |
Returns | |
---|---|
Dataset | The Dataset containing the elements of this dataset for which predicate is True . |
flat_map
flat_map( map_func )
Maps map_func
across this dataset and flattens the result.
Use flat_map
if you want to make sure that the order of your dataset stays the same. For example, to flatten a dataset of batches into a dataset of their elements:
a = Dataset.from_tensor_slices([ [1, 2, 3], [4, 5, 6], [7, 8, 9] ]) a.flat_map(lambda x: Dataset.from_tensor_slices(x + 1)) # ==> # [ 2, 3, 4, 5, 6, 7, 8, 9, 10 ]
tf.data.Dataset.interleave()
is a generalization of flat_map
, since flat_map
produces the same output as tf.data.Dataset.interleave(cycle_length=1)
Args | |
---|---|
map_func | A function mapping a dataset element to a dataset. |
Returns | |
---|---|
Dataset | A Dataset . |
from_generator
@staticmethod from_generator( generator, output_types, output_shapes=None, args=None )
Creates a Dataset
whose elements are generated by generator
.
The generator
argument must be a callable object that returns an object that supports the iter()
protocol (e.g. a generator function). The elements generated by generator
must be compatible with the given output_types
and (optional) output_shapes
arguments.
import itertools tf.compat.v1.enable_eager_execution() def gen(): for i in itertools.count(1): yield (i, [1] * i) ds = tf.data.Dataset.from_generator( gen, (tf.int64, tf.int64), (tf.TensorShape([]), tf.TensorShape([None]))) for value in ds.take(2): print value # (1, array([1])) # (2, array([1, 1]))
Note: The current implementation ofDataset.from_generator()
usestf.numpy_function
and inherits the same constraints. In particular, it requires theDataset
- andIterator
-related operations to be placed on a device in the same process as the Python program that calledDataset.from_generator()
. The body ofgenerator
will not be serialized in aGraphDef
, and you should not use this method if you need to serialize your model and restore it in a different environment.
Note: Ifgenerator
depends on mutable global variables or other external state, be aware that the runtime may invokegenerator
multiple times (in order to support repeating theDataset
) and at any time between the call toDataset.from_generator()
and the production of the first element from the generator. Mutating global variables or external state can cause undefined behavior, and we recommend that you explicitly cache any external state ingenerator
before callingDataset.from_generator()
.
Args | |
---|---|
generator | A callable object that returns an object that supports the iter() protocol. If args is not specified, generator must take no arguments; otherwise it must take as many arguments as there are values in args . |
output_types | A nested structure of tf.DType objects corresponding to each component of an element yielded by generator . |
output_shapes | (Optional.) A nested structure of tf.TensorShape objects corresponding to each component of an element yielded by generator . |
args | (Optional.) A tuple of tf.Tensor objects that will be evaluated and passed to generator as NumPy-array arguments. |
Returns | |
---|---|
Dataset | A Dataset . |
from_tensor_slices
@staticmethod from_tensor_slices( tensors )
Creates a Dataset
whose elements are slices of the given tensors.
Note that if tensors
contains a NumPy array, and eager execution is not enabled, the values will be embedded in the graph as one or more tf.constant
operations. For large datasets (> 1 GB), this can waste memory and run into byte limits of graph serialization. If tensors
contains one or more large NumPy arrays, consider the alternative described in this guide.
Args | |
---|---|
tensors | A dataset element, with each component having the same size in the 0th dimension. |
Returns | |
---|---|
Dataset | A Dataset . |
from_tensors
@staticmethod from_tensors( tensors )
Creates a Dataset
with a single element, comprising the given tensors.
Note that if tensors
contains a NumPy array, and eager execution is not enabled, the values will be embedded in the graph as one or more tf.constant
operations. For large datasets (> 1 GB), this can waste memory and run into byte limits of graph serialization. If tensors
contains one or more large NumPy arrays, consider the alternative described in this guide.
Args | |
---|---|
tensors | A dataset element. |
Returns | |
---|---|
Dataset | A Dataset . |
interleave
interleave( map_func, cycle_length=AUTOTUNE, block_length=1, num_parallel_calls=None )
Maps map_func
across this dataset, and interleaves the results.
For example, you can use Dataset.interleave()
to process many input files concurrently:
# Preprocess 4 files concurrently, and interleave blocks of 16 records from # each file. filenames = ["/var/data/file1.txt", "/var/data/file2.txt", ...] dataset = (Dataset.from_tensor_slices(filenames) .interleave(lambda x: TextLineDataset(x).map(parse_fn, num_parallel_calls=1), cycle_length=4, block_length=16))
The cycle_length
and block_length
arguments control the order in which elements are produced. cycle_length
controls the number of input elements that are processed concurrently. If you set cycle_length
to 1, this transformation will handle one input element at a time, and will produce identical results to tf.data.Dataset.flat_map
. In general, this transformation will apply map_func
to cycle_length
input elements, open iterators on the returned Dataset
objects, and cycle through them producing block_length
consecutive elements from each iterator, and consuming the next input element each time it reaches the end of an iterator.
a = Dataset.range(1, 6) # ==> [ 1, 2, 3, 4, 5 ] # NOTE: New lines indicate "block" boundaries. a.interleave(lambda x: Dataset.from_tensors(x).repeat(6), cycle_length=2, block_length=4) # ==> [1, 1, 1, 1, # 2, 2, 2, 2, # 1, 1, # 2, 2, # 3, 3, 3, 3, # 4, 4, 4, 4, # 3, 3, # 4, 4, # 5, 5, 5, 5, # 5, 5]
Note: The order of elements yielded by this transformation is deterministic, as long asmap_func
is a pure function. Ifmap_func
contains any stateful operations, the order in which that state is accessed is undefined.
Args | |
---|---|
map_func | A function mapping a dataset element to a dataset. |
cycle_length | (Optional.) The number of input elements that will be processed concurrently. If not specified, the value will be derived from the number of available CPU cores. If the num_parallel_calls argument is set to tf.data.experimental.AUTOTUNE , the cycle_length argument also identifies the maximum degree of parallelism. |
block_length | (Optional.) The number of consecutive elements to produce from each input element before cycling to another input element. |
num_parallel_calls | (Optional.) If specified, the implementation creates a threadpool, which is used to fetch inputs from cycle elements asynchronously and in parallel. The default behavior is to fetch inputs from cycle elements synchronously with no parallelism. If the value tf.data.experimental.AUTOTUNE is used, then the number of parallel calls is set dynamically based on available CPU. |
Returns | |
---|---|
Dataset | A Dataset . |
list_files
@staticmethod list_files( file_pattern, shuffle=None, seed=None )
A dataset of all files matching one or more glob patterns.
Note: The default behavior of this method is to return filenames in a non-deterministic random shuffled order. Pass aseed
orshuffle=False
to get results in a deterministic order.
If we had the following files on our filesystem:
Args | |
---|---|
file_pattern | A string, a list of strings, or a tf.Tensor of string type (scalar or vector), representing the filename glob (i.e. shell wildcard) pattern(s) that will be matched. |
shuffle | (Optional.) If True , the file names will be shuffled randomly. Defaults to True . |
seed | (Optional.) A tf.int64 scalar tf.Tensor , representing the random seed that will be used to create the distribution. See tf.compat.v1.set_random_seed for behavior. |
Returns | |
---|---|
Dataset | A Dataset of strings corresponding to file names. |
map
map( map_func, num_parallel_calls=None )
Maps map_func
across the elements of this dataset.
This transformation applies map_func
to each element of this dataset, and returns a new dataset containing the transformed elements, in the same order as they appeared in the input.
a = Dataset.range(1, 6) # ==> [ 1, 2, 3, 4, 5 ] a.map(lambda x: x + 1) # ==> [ 2, 3, 4, 5, 6 ]
The input signature of map_func
is determined by the structure of each element in this dataset. For example:
# NOTE: The following examples use `{ ... }` to represent the # contents of a dataset. # Each element is a `tf.Tensor` object. a = { 1, 2, 3, 4, 5 } # `map_func` takes a single argument of type `tf.Tensor` with the same # shape and dtype. result = a.map(lambda x: ...) # Each element is a tuple containing two `tf.Tensor` objects. b = { (1, "foo"), (2, "bar"), (3, "baz") } # `map_func` takes two arguments of type `tf.Tensor`. result = b.map(lambda x_int, y_str: ...) # Each element is a dictionary mapping strings to `tf.Tensor` objects. c = { {"a": 1, "b": "foo"}, {"a": 2, "b": "bar"}, {"a": 3, "b": "baz"} } # `map_func` takes a single argument of type `dict` with the same keys as # the elements. result = c.map(lambda d: ...)
The value or values returned by map_func
determine the structure of each element in the returned dataset.
# `map_func` returns a scalar `tf.Tensor` of type `tf.float32`. def f(...): return tf.constant(37.0) result = dataset.map(f) result.output_classes == tf.Tensor result.output_types == tf.float32 result.output_shapes == [] # scalar # `map_func` returns two `tf.Tensor` objects. def g(...): return tf.constant(37.0), tf.constant(["Foo", "Bar", "Baz"]) result = dataset.map(g) result.output_classes == (tf.Tensor, tf.Tensor) result.output_types == (tf.float32, tf.string) result.output_shapes == ([], [3]) # Python primitives, lists, and NumPy arrays are implicitly converted to # `tf.Tensor`. def h(...): return 37.0, ["Foo", "Bar", "Baz"], np.array([1.0, 2.0] dtype=np.float64) result = dataset.map(h) result.output_classes == (tf.Tensor, tf.Tensor, tf.Tensor) result.output_types == (tf.float32, tf.string, tf.float64) result.output_shapes == ([], [3], [2]) # `map_func` can return nested structures. def i(...): return {"a": 37.0, "b": [42, 16]}, "foo" result.output_classes == ({"a": tf.Tensor, "b": tf.Tensor}, tf.Tensor) result.output_types == ({"a": tf.float32, "b": tf.int32}, tf.string) result.output_shapes == ({"a": [], "b": [2]}, [])
map_func
can accept as arguments and return any type of dataset element.
Note that irrespective of the context in which map_func
is defined (eager vs. graph), tf.data traces the function and executes it as a graph. To use Python code inside of the function you have two options:
1) Rely on AutoGraph to convert Python code into an equivalent graph computation. The downside of this approach is that AutoGraph can convert some but not all Python code.
2) Use tf.py_function
, which allows you to write arbitrary Python code but will generally result in worse performance than 1). For example:
d = tf.data.Dataset.from_tensor_slices(['hello', 'world']) # transform a string tensor to upper case string using a Python function def upper_case_fn(t: tf.Tensor) -> str: return t.numpy().decode('utf-8').upper() d.map(lambda x: tf.py_function(func=upper_case_fn, inp=[x], Tout=tf.string)) # ==> [ "HELLO", "WORLD" ]
Args | |
---|---|
map_func | A function mapping a dataset element to another dataset element. |
num_parallel_calls | (Optional.) A tf.int32 scalar tf.Tensor , representing the number elements to process asynchronously in parallel. If not specified, elements will be processed sequentially. If the value tf.data.experimental.AUTOTUNE is used, then the number of parallel calls is set dynamically based on available CPU. |
Returns | |
---|---|
Dataset | A Dataset . |
options
options()
Returns the options for this dataset and its inputs.
Returns | |
---|---|
A tf.data.Options object representing the dataset options. |
padded_batch
padded_batch( batch_size, padded_shapes, padding_values=None, drop_remainder=False )
Combines consecutive elements of this dataset into padded batches.
This transformation combines multiple consecutive elements of the input dataset into a single element.
Like tf.data.Dataset.batch
, the components of the resulting element will have an additional outer dimension, which will be batch_size
(or N % batch_size
for the last element if batch_size
does not divide the number of input elements N
evenly and drop_remainder
is False
). If your program depends on the batches having the same outer dimension, you should set the drop_remainder
argument to True
to prevent the smaller batch from being produced.
Unlike tf.data.Dataset.batch
, the input elements to be batched may have different shapes, and this transformation will pad each component to the respective shape in padding_shapes
. The padding_shapes
argument determines the resulting shape for each dimension of each component in an output element:
tf.compat.v1.Dimension(37)
), the component will be padded out to that length in that dimension.tf.compat.v1.Dimension(None)
), the component will be padded out to the maximum length of all elements in that dimension.See also tf.data.experimental.dense_to_sparse_batch
, which combines elements that may have different shapes into a tf.SparseTensor
.
Args | |
---|---|
batch_size | A tf.int64 scalar tf.Tensor , representing the number of consecutive elements of this dataset to combine in a single batch. |
padded_shapes | A nested structure of tf.TensorShape or tf.int64 vector tensor-like objects representing the shape to which the respective component of each input element should be padded prior to batching. Any unknown dimensions (e.g. tf.compat.v1.Dimension(None) in a tf.TensorShape or -1 in a tensor-like object) will be padded to the maximum size of that dimension in each batch. |
padding_values | (Optional.) A nested structure of scalar-shaped tf.Tensor , representing the padding values to use for the respective components. Defaults are 0 for numeric types and the empty string for string types. |
drop_remainder | (Optional.) A tf.bool scalar tf.Tensor , representing whether the last batch should be dropped in the case it has fewer than batch_size elements; the default behavior is not to drop the smaller batch. |
Returns | |
---|---|
Dataset | A Dataset . |
prefetch
prefetch( buffer_size )
Creates a Dataset
that prefetches elements from this dataset.
Note: Like otherDataset
methods, prefetch operates on the elements of the input dataset. It has no concept of examples vs. batches.examples.prefetch(2)
will prefetch two elements (2 examples), whileexamples.batch(20).prefetch(2)
will prefetch 2 elements (2 batches, of 20 examples each).
Args | |
---|---|
buffer_size | A tf.int64 scalar tf.Tensor , representing the maximum number of elements that will be buffered when prefetching. |
Returns | |
---|---|
Dataset | A Dataset . |
range
@staticmethod range( *args )
Creates a Dataset
of a step-separated range of values.
Dataset.range(5) == [0, 1, 2, 3, 4] Dataset.range(2, 5) == [2, 3, 4] Dataset.range(1, 5, 2) == [1, 3] Dataset.range(1, 5, -2) == [] Dataset.range(5, 1) == [] Dataset.range(5, 1, -2) == [5, 3]
Args | |
---|---|
*args | follows the same semantics as python's xrange. len(args) == 1 -> start = 0, stop = args[0], step = 1 len(args) == 2 -> start = args[0], stop = args[1], step = 1 len(args) == 3 -> start = args[0], stop = args[1, stop = args[2] |
Returns | |
---|---|
Dataset | A RangeDataset . |
Raises | |
---|---|
ValueError | if len(args) == 0. |
reduce
reduce( initial_state, reduce_func )
Reduces the input dataset to a single element.
The transformation calls reduce_func
successively on every element of the input dataset until the dataset is exhausted, aggregating information in its internal state. The initial_state
argument is used for the initial state and the final state is returned as the result.
tf.data.Dataset.range(5).reduce(np.int64(0), lambda x, _: x + 1)
produces 5
tf.data.Dataset.range(5).reduce(np.int64(0), lambda x, y: x + y)
produces 10
Args | |
---|---|
initial_state | An element representing the initial state of the transformation. |
reduce_func | A function that maps (old_state, input_element) to new_state . It must take two arguments and return a new element The structure of new_state must match the structure of initial_state . |
Returns | |
---|---|
A dataset element corresponding to the final state of the transformation. |
repeat
repeat( count=None )
Repeats this dataset count
times.
Note: If this dataset is a function of global state (e.g. a random number generator), then different repetitions may produce different elements.
Args | |
---|---|
count | (Optional.) A tf.int64 scalar tf.Tensor , representing the number of times the dataset should be repeated. The default behavior (if count is None or -1 ) is for the dataset be repeated indefinitely. |
Returns | |
---|---|
Dataset | A Dataset . |
shard
shard( num_shards, index )
Creates a Dataset
that includes only 1/num_shards
of this dataset.
This dataset operator is very useful when running distributed training, as it allows each worker to read a unique subset.
When reading a single input file, you can skip elements as follows:
d = tf.data.TFRecordDataset(input_file) d = d.shard(num_workers, worker_index) d = d.repeat(num_epochs) d = d.shuffle(shuffle_buffer_size) d = d.map(parser_fn, num_parallel_calls=num_map_threads)
d = Dataset.list_files(pattern) d = d.shard(num_workers, worker_index) d = d.repeat(num_epochs) d = d.shuffle(shuffle_buffer_size) d = d.interleave(tf.data.TFRecordDataset, cycle_length=num_readers, block_length=1) d = d.map(parser_fn, num_parallel_calls=num_map_threads)
Args | |
---|---|
num_shards | A tf.int64 scalar tf.Tensor , representing the number of shards operating in parallel. |
index | A tf.int64 scalar tf.Tensor , representing the worker index. |
Returns | |
---|---|
Dataset | A Dataset . |
Raises | |
---|---|
InvalidArgumentError | if num_shards or index are illegal values. Note: error checking is done on a best-effort basis, and errors aren't guaranteed to be caught upon dataset creation. (e.g. providing in a placeholder tensor bypasses the early checking, and will instead result in an error during a session.run call.) |
shuffle
shuffle( buffer_size, seed=None, reshuffle_each_iteration=None )
Randomly shuffles the elements of this dataset.
This dataset fills a buffer with buffer_size
elements, then randomly samples elements from this buffer, replacing the selected elements with new elements. For perfect shuffling, a buffer size greater than or equal to the full size of the dataset is required.
For instance, if your dataset contains 10,000 elements but buffer_size
is set to 1,000, then shuffle
will initially select a random element from only the first 1,000 elements in the buffer. Once an element is selected, its space in the buffer is replaced by the next (i.e. 1,001-st) element, maintaining the 1,000 element buffer.
Args | |
---|---|
buffer_size | A tf.int64 scalar tf.Tensor , representing the number of elements from this dataset from which the new dataset will sample. |
seed | (Optional.) A tf.int64 scalar tf.Tensor , representing the random seed that will be used to create the distribution. See tf.compat.v1.set_random_seed for behavior. |
reshuffle_each_iteration | (Optional.) A boolean, which if true indicates that the dataset should be pseudorandomly reshuffled each time it is iterated over. (Defaults to True .) |
Returns | |
---|---|
Dataset | A Dataset . |
skip
skip( count )
Creates a Dataset
that skips count
elements from this dataset.
Args | |
---|---|
count | A tf.int64 scalar tf.Tensor , representing the number of elements of this dataset that should be skipped to form the new dataset. If count is greater than the size of this dataset, the new dataset will contain no elements. If count is -1, skips the entire dataset. |
Returns | |
---|---|
Dataset | A Dataset . |
take
take( count )
Creates a Dataset
with at most count
elements from this dataset.
Args | |
---|---|
count | A tf.int64 scalar tf.Tensor , representing the number of elements of this dataset that should be taken to form the new dataset. If count is -1, or if count is greater than the size of this dataset, the new dataset will contain all elements of this dataset. |
Returns | |
---|---|
Dataset | A Dataset . |
unbatch
unbatch()
Splits elements of a dataset into multiple elements.
For example, if elements of the dataset are shaped [B, a0, a1, ...]
, where B
may vary for each input element, then for each element in the dataset, the unbatched dataset will contain B
consecutive elements of shape [a0, a1, ...]
.
# NOTE: The following example uses `{ ... }` to represent the contents # of a dataset. ds = { ['a', 'b', 'c'], ['a', 'b'], ['a', 'b', 'c', 'd'] } ds.unbatch() == {'a', 'b', 'c', 'a', 'b', 'a', 'b', 'c', 'd'}
Returns | |
---|---|
A Dataset transformation function, which can be passed to tf.data.Dataset.apply . |
window
window( size, shift=None, stride=1, drop_remainder=False )
Combines (nests of) input elements into a dataset of (nests of) windows.
A "window" is a finite dataset of flat elements of size size
(or possibly fewer if there are not enough input elements to fill the window and drop_remainder
evaluates to false).
The stride
argument determines the stride of the input elements, and the shift
argument determines the shift of the window.
For example, letting {...} to represent a Dataset:
tf.data.Dataset.range(7).window(2)
produces { {0, 1}, {2, 3}, {4, 5}, {6} }
tf.data.Dataset.range(7).window(3, 2, 1, True)
produces { {0, 1, 2}, {2, 3, 4}, {4, 5, 6} }
tf.data.Dataset.range(7).window(3, 1, 2, True)
produces { {0, 2, 4}, {1, 3, 5}, {2, 4, 6} }
Note that when the window
transformation is applied to a dataset of nested elements, it produces a dataset of nested windows.
tf.data.Dataset.from_tensor_slices((range(4), range(4))).window(2)
produces {({0, 1}, {0, 1}), ({2, 3}, {2, 3})}
tf.data.Dataset.from_tensor_slices({"a": range(4)}).window(2)
produces { {"a": {0, 1} }, {"a": {2, 3} } }
Args | |
---|---|
size | A tf.int64 scalar tf.Tensor , representing the number of elements of the input dataset to combine into a window. |
shift | (Optional.) A tf.int64 scalar tf.Tensor , representing the forward shift of the sliding window in each iteration. Defaults to size . |
stride | (Optional.) A tf.int64 scalar tf.Tensor , representing the stride of the input elements in the sliding window. |
drop_remainder | (Optional.) A tf.bool scalar tf.Tensor , representing whether a window should be dropped in case its size is smaller than window_size . |
Returns | |
---|---|
Dataset | A Dataset of (nests of) windows -- a finite datasets of flat elements created from the (nests of) input elements. |
with_options
with_options( options )
Returns a new tf.data.Dataset
with the given options set.
The options are "global" in the sense they apply to the entire dataset. If options are set multiple times, they are merged as long as different options do not use different non-default values.
Args | |
---|---|
options | A tf.data.Options that identifies the options the use. |
Returns | |
---|---|
Dataset | A Dataset with the given options. |
Raises | |
---|---|
ValueError | when an option is set more than once to a non-default value |
zip
@staticmethod zip( datasets )
Creates a Dataset
by zipping together the given datasets.
This method has similar semantics to the built-in zip()
function in Python, with the main difference being that the datasets
argument can be an arbitrary nested structure of Dataset
objects. For example:
a = Dataset.range(1, 4) # ==> [ 1, 2, 3 ] b = Dataset.range(4, 7) # ==> [ 4, 5, 6 ] c = Dataset.range(7, 13).batch(2) # ==> [ [7, 8], [9, 10], [11, 12] ] d = Dataset.range(13, 15) # ==> [ 13, 14 ] # The nested structure of the `datasets` argument determines the # structure of elements in the resulting dataset. Dataset.zip((a, b)) # ==> [ (1, 4), (2, 5), (3, 6) ] Dataset.zip((b, a)) # ==> [ (4, 1), (5, 2), (6, 3) ] # The `datasets` argument may contain an arbitrary number of # datasets. Dataset.zip((a, b, c)) # ==> [ (1, 4, [7, 8]), # (2, 5, [9, 10]), # (3, 6, [11, 12]) ] # The number of elements in the resulting dataset is the same as # the size of the smallest dataset in `datasets`. Dataset.zip((a, d)) # ==> [ (1, 13), (2, 14) ]
Args | |
---|---|
datasets | A nested structure of datasets. |
Returns | |
---|---|
Dataset | A Dataset . |
__iter__
__iter__()
Creates an Iterator
for enumerating the elements of this dataset.
The returned iterator implements the Python iterator protocol and therefore can only be used in eager mode.
Returns | |
---|---|
An Iterator over the elements of this dataset. |
Raises | |
---|---|
RuntimeError | If not inside of tf.function and not executing eagerly. |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/compat/v2/data/Dataset