W3cubDocs

/TensorFlow 1.15

tf.Tensor

View source on GitHub

Represents one of the outputs of an Operation.

A Tensor is a symbolic handle to one of the outputs of an Operation. It does not hold the values of that operation's output, but instead provides a means of computing those values in a TensorFlow tf.compat.v1.Session.

This class has two primary purposes:

  1. A Tensor can be passed as an input to another Operation. This builds a dataflow connection between operations, which enables TensorFlow to execute an entire Graph that represents a large, multi-step computation.

  2. After the graph has been launched in a session, the value of the Tensor can be computed by passing it to tf.Session.run. t.eval() is a shortcut for calling tf.compat.v1.get_default_session().run(t).

In the following example, c, d, and e are symbolic Tensor objects, whereas result is a numpy array that stores a concrete value:

# Build a dataflow graph.
c = tf.constant([[1.0, 2.0], [3.0, 4.0]])
d = tf.constant([[1.0, 1.0], [0.0, 1.0]])
e = tf.matmul(c, d)

# Construct a `Session` to execute the graph.
sess = tf.compat.v1.Session()

# Execute the graph and store the value that `e` represents in `result`.
result = sess.run(e)
Args
op An Operation. Operation that computes this tensor.
value_index An int. Index of the operation's endpoint that produces this tensor.
dtype A DType. Type of elements stored in this tensor.
Raises
TypeError If the op is not an Operation.
Attributes
device The name of the device on which this tensor will be produced, or None.
dtype The DType of elements in this tensor.
graph The Graph that contains this tensor.
name The string name of this tensor.
op The Operation that produces this tensor as an output.
shape Returns the TensorShape that represents the shape of this tensor.

The shape is computed using shape inference functions that are registered in the Op for each Operation. See tf.TensorShape for more details of what a shape represents.

The inferred shape of a tensor is used to provide shape information without having to launch the graph in a session. This can be used for debugging, and providing early error messages. For example:

c = tf.constant([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])

print(c.shape)
==> TensorShape([Dimension(2), Dimension(3)])

d = tf.constant([[1.0, 0.0], [0.0, 1.0], [1.0, 0.0], [0.0, 1.0]])

print(d.shape)
==> TensorShape([Dimension(4), Dimension(2)])

# Raises a ValueError, because `c` and `d` do not have compatible
# inner dimensions.
e = tf.matmul(c, d)

f = tf.matmul(c, d, transpose_a=True, transpose_b=True)

print(f.shape)
==> TensorShape([Dimension(3), Dimension(4)])

In some cases, the inferred shape may have unknown dimensions. If the caller has additional information about the values of these dimensions, Tensor.set_shape() can be used to augment the inferred shape.

value_index The index of this tensor in the outputs of its Operation.

Methods

consumers

View source

Returns a list of Operations that consume this tensor.

Returns
A list of Operations.

eval

View source

Evaluates this tensor in a Session.

Calling this method will execute all preceding operations that produce the inputs needed for the operation that produces this tensor.

Note: Before invoking Tensor.eval(), its graph must have been launched in a session, and either a default session must be available, or session must be specified explicitly.
Args
feed_dict A dictionary that maps Tensor objects to feed values. See tf.Session.run for a description of the valid feed values.
session (Optional.) The Session to be used to evaluate this tensor. If none, the default session will be used.
Returns
A numpy array corresponding to the value of this tensor.

experimental_ref

View source

Returns a hashable reference object to this Tensor.

The primary usecase for this API is to put tensors in a set/dictionary. We can't put tensors in a set/dictionary as tensor.__hash__() is no longer available starting Tensorflow 2.0.

import tensorflow as tf

x = tf.constant(5)
y = tf.constant(10)
z = tf.constant(10)

# The followings will raise an exception starting 2.0
# TypeError: Tensor is unhashable if Tensor equality is enabled.
tensor_set = {x, y, z}
tensor_dict = {x: 'five', y: 'ten', z: 'ten'}

Instead, we can use tensor.experimental_ref().

tensor_set = {x.experimental_ref(),
              y.experimental_ref(),
              z.experimental_ref()}

print(x.experimental_ref() in tensor_set)
==> True

tensor_dict = {x.experimental_ref(): 'five',
               y.experimental_ref(): 'ten',
               z.experimental_ref(): 'ten'}

print(tensor_dict[y.experimental_ref()])
==> ten

Also, the reference object provides .deref() function that returns the original Tensor.

x = tf.constant(5)
print(x.experimental_ref().deref())
==> tf.Tensor(5, shape=(), dtype=int32)

get_shape

View source

Alias of Tensor.shape.

set_shape

View source

Updates the shape of this tensor.

This method can be called multiple times, and will merge the given shape with the current shape of this tensor. It can be used to provide additional information about the shape of this tensor that cannot be inferred from the graph alone. For example, this can be used to provide additional information about the shapes of images:

_, image_data = tf.compat.v1.TFRecordReader(...).read(...)
image = tf.image.decode_png(image_data, channels=3)

# The height and width dimensions of `image` are data dependent, and
# cannot be computed without executing the op.
print(image.shape)
==> TensorShape([Dimension(None), Dimension(None), Dimension(3)])

# We know that each image in this dataset is 28 x 28 pixels.
image.set_shape([28, 28, 3])
print(image.shape)
==> TensorShape([Dimension(28), Dimension(28), Dimension(3)])
Note: This shape is not enforced at runtime. Setting incorrect shapes can result in inconsistencies between the statically-known graph and the runtime value of tensors. For runtime validation of the shape, use tf.ensure_shape instead.
Args
shape A TensorShape representing the shape of this tensor, a TensorShapeProto, a list, a tuple, or None.
Raises
ValueError If shape is not compatible with the current shape of this tensor.

__abs__

View source

Computes the absolute value of a tensor.

Given a tensor of integer or floating-point values, this operation returns a tensor of the same type, where each element contains the absolute value of the corresponding element in the input.

Given a tensor x of complex numbers, this operation returns a tensor of type float32 or float64 that is the absolute value of each element in x. All elements in x must be complex numbers of the form \(a + bj\). The absolute value is computed as \( \sqrt{a^2 + b^2}\). For example:

x = tf.constant([[-2.25 + 4.75j], [-3.25 + 5.75j]])
tf.abs(x)  # [5.25594902, 6.60492229]
Args
x A Tensor or SparseTensor of type float16, float32, float64, int32, int64, complex64 or complex128.
name A name for the operation (optional).
Returns
A Tensor or SparseTensor the same size, type, and sparsity as x with absolute values. Note, for complex64 or complex128 input, the returned Tensor will be of type float32 or float64, respectively.

If x is a SparseTensor, returns SparseTensor(x.indices, tf.math.abs(x.values, ...), x.dense_shape)

__add__

View source

Dispatches to add for strings and add_v2 for all other types.

__and__

View source

Returns the truth value of x AND y element-wise.

Note: math.logical_and supports broadcasting. More about broadcasting here
Args
x A Tensor of type bool.
y A Tensor of type bool.
name A name for the operation (optional).
Returns
A Tensor of type bool.

__bool__

View source

Dummy method to prevent a tensor from being used as a Python bool.

This overload raises a TypeError when the user inadvertently treats a Tensor as a boolean (most commonly in an if or while statement), in code that was not converted by AutoGraph. For example:

if tf.constant(True):  # Will raise.
  # ...

if tf.constant(5) < tf.constant(7):  # Will raise.
  # ...
Raises
TypeError.

__div__

View source

Divide two values using Python 2 semantics.

Used for Tensor.div.

Args
x Tensor numerator of real numeric type.
y Tensor denominator of real numeric type.
name A name for the operation (optional).
Returns
x / y returns the quotient of x and y.

__eq__

View source

Compares two tensors element-wise for equality.

__floordiv__

View source

Divides x / y elementwise, rounding toward the most negative integer.

The same as tf.compat.v1.div(x,y) for integers, but uses tf.floor(tf.compat.v1.div(x,y)) for floating point arguments so that the result is always an integer (though possibly an integer represented as floating point). This op is generated by x // y floor division in Python 3 and in Python 2.7 with from __future__ import division.

x and y must have the same type, and the result will have the same type as well.

Args
x Tensor numerator of real numeric type.
y Tensor denominator of real numeric type.
name A name for the operation (optional).
Returns
x / y rounded down.
Raises
TypeError If the inputs are complex.

__ge__

Returns the truth value of (x >= y) element-wise.

Note: math.greater_equal supports broadcasting. More about broadcasting here
Args
x A Tensor. Must be one of the following types: float32, float64, int32, uint8, int16, int8, int64, bfloat16, uint16, half, uint32, uint64.
y A Tensor. Must have the same type as x.
name A name for the operation (optional).
Returns
A Tensor of type bool.

__getitem__

View source

Overload for Tensor.getitem.

This operation extracts the specified region from the tensor. The notation is similar to NumPy with the restriction that currently only support basic indexing. That means that using a non-scalar tensor as input is not currently allowed.

Some useful examples:

# Strip leading and trailing 2 elements
foo = tf.constant([1,2,3,4,5,6])
print(foo[2:-2].eval())  # => [3,4]

# Skip every other row and reverse the order of the columns
foo = tf.constant([[1,2,3], [4,5,6], [7,8,9]])
print(foo[::2,::-1].eval())  # => [[3,2,1], [9,8,7]]

# Use scalar tensors as indices on both dimensions
print(foo[tf.constant(0), tf.constant(2)].eval())  # => 3

# Insert another dimension
foo = tf.constant([[1,2,3], [4,5,6], [7,8,9]])
print(foo[tf.newaxis, :, :].eval()) # => [[[1,2,3], [4,5,6], [7,8,9]]]
print(foo[:, tf.newaxis, :].eval()) # => [[[1,2,3]], [[4,5,6]], [[7,8,9]]]
print(foo[:, :, tf.newaxis].eval()) # => [[[1],[2],[3]], [[4],[5],[6]],
[[7],[8],[9]]]

# Ellipses (3 equivalent operations)
foo = tf.constant([[1,2,3], [4,5,6], [7,8,9]])
print(foo[tf.newaxis, :, :].eval())  # => [[[1,2,3], [4,5,6], [7,8,9]]]
print(foo[tf.newaxis, ...].eval())  # => [[[1,2,3], [4,5,6], [7,8,9]]]
print(foo[tf.newaxis].eval())  # => [[[1,2,3], [4,5,6], [7,8,9]]]

# Masks
foo = tf.constant([[1,2,3], [4,5,6], [7,8,9]])
print(foo[foo > 2].eval())  # => [3, 4, 5, 6, 7, 8, 9]

Notes:

  • tf.newaxis is None as in NumPy.
  • An implicit ellipsis is placed at the end of the slice_spec
  • NumPy advanced indexing is currently not supported.
Args
tensor An ops.Tensor object.
slice_spec The arguments to Tensor.getitem.
var In the case of variable slice assignment, the Variable object to slice (i.e. tensor is the read-only view of this variable).
Returns
The appropriate slice of "tensor", based on "slice_spec".
Raises
ValueError If a slice range is negative size.
TypeError If the slice indices aren't int, slice, ellipsis, tf.newaxis or scalar int32/int64 tensors.

__gt__

Returns the truth value of (x > y) element-wise.

Note: math.greater supports broadcasting. More about broadcasting here
Args
x A Tensor. Must be one of the following types: float32, float64, int32, uint8, int16, int8, int64, bfloat16, uint16, half, uint32, uint64.
y A Tensor. Must have the same type as x.
name A name for the operation (optional).
Returns
A Tensor of type bool.

__invert__

Returns the truth value of NOT x element-wise.

Args
x A Tensor of type bool.
name A name for the operation (optional).
Returns
A Tensor of type bool.

__iter__

View source

__le__

Returns the truth value of (x <= y) element-wise.

Note: math.less_equal supports broadcasting. More about broadcasting here
Args
x A Tensor. Must be one of the following types: float32, float64, int32, uint8, int16, int8, int64, bfloat16, uint16, half, uint32, uint64.
y A Tensor. Must have the same type as x.
name A name for the operation (optional).
Returns
A Tensor of type bool.

__len__

View source

__lt__

Returns the truth value of (x < y) element-wise.

Note: math.less supports broadcasting. More about broadcasting here
Args
x A Tensor. Must be one of the following types: float32, float64, int32, uint8, int16, int8, int64, bfloat16, uint16, half, uint32, uint64.
y A Tensor. Must have the same type as x.
name A name for the operation (optional).
Returns
A Tensor of type bool.

__matmul__

View source

Multiplies matrix a by matrix b, producing a * b.

The inputs must, following any transpositions, be tensors of rank >= 2 where the inner 2 dimensions specify valid matrix multiplication arguments, and any further outer dimensions match.

Both matrices must be of the same type. The supported types are: float16, float32, float64, int32, complex64, complex128.

Either matrix can be transposed or adjointed (conjugated and transposed) on the fly by setting one of the corresponding flag to True. These are False by default.

If one or both of the matrices contain a lot of zeros, a more efficient multiplication algorithm can be used by setting the corresponding a_is_sparse or b_is_sparse flag to True. These are False by default. This optimization is only available for plain matrices (rank-2 tensors) with datatypes bfloat16 or float32.

For example:

# 2-D tensor `a`
# [[1, 2, 3],
#  [4, 5, 6]]
a = tf.constant([1, 2, 3, 4, 5, 6], shape=[2, 3])

# 2-D tensor `b`
# [[ 7,  8],
#  [ 9, 10],
#  [11, 12]]
b = tf.constant([7, 8, 9, 10, 11, 12], shape=[3, 2])

# `a` * `b`
# [[ 58,  64],
#  [139, 154]]
c = tf.matmul(a, b)


# 3-D tensor `a`
# [[[ 1,  2,  3],
#   [ 4,  5,  6]],
#  [[ 7,  8,  9],
#   [10, 11, 12]]]
a = tf.constant(np.arange(1, 13, dtype=np.int32),
                shape=[2, 2, 3])

# 3-D tensor `b`
# [[[13, 14],
#   [15, 16],
#   [17, 18]],
#  [[19, 20],
#   [21, 22],
#   [23, 24]]]
b = tf.constant(np.arange(13, 25, dtype=np.int32),
                shape=[2, 3, 2])

# `a` * `b`
# [[[ 94, 100],
#   [229, 244]],
#  [[508, 532],
#   [697, 730]]]
c = tf.matmul(a, b)

# Since python >= 3.5 the @ operator is supported (see PEP 465).
# In TensorFlow, it simply calls the `tf.matmul()` function, so the
# following lines are equivalent:
d = a @ b @ [[10.], [11.]]
d = tf.matmul(tf.matmul(a, b), [[10.], [11.]])
Args
a Tensor of type float16, float32, float64, int32, complex64, complex128 and rank > 1.
b Tensor with same type and rank as a.
transpose_a If True, a is transposed before multiplication.
transpose_b If True, b is transposed before multiplication.
adjoint_a If True, a is conjugated and transposed before multiplication.
adjoint_b If True, b is conjugated and transposed before multiplication.
a_is_sparse If True, a is treated as a sparse matrix.
b_is_sparse If True, b is treated as a sparse matrix.
name Name for the operation (optional).
Returns
A Tensor of the same type as a and b where each inner-most matrix is the product of the corresponding matrices in a and b, e.g. if all transpose or adjoint attributes are False:

output[..., i, j] = sum_k (a[..., i, k] * b[..., k, j]), for all indices i, j.

Note This is matrix product, not element-wise product.
Raises
ValueError If transpose_a and adjoint_a, or transpose_b and adjoint_b are both set to True.

__mod__

View source

Returns element-wise remainder of division. When x < 0 xor y < 0 is

true, this follows Python semantics in that the result here is consistent with a flooring divide. E.g. floor(x / y) * y + mod(x, y) = x.

Note: math.floormod supports broadcasting. More about broadcasting here
Args
x A Tensor. Must be one of the following types: int32, int64, bfloat16, half, float32, float64.
y A Tensor. Must have the same type as x.
name A name for the operation (optional).
Returns
A Tensor. Has the same type as x.

__mul__

View source

Dispatches cwise mul for "DenseDense" and "DenseSparse".

__ne__

View source

Compares two tensors element-wise for equality.

__neg__

Computes numerical negative value element-wise.

I.e., \(y = -x\).

Args
x A Tensor. Must be one of the following types: bfloat16, half, float32, float64, int32, int64, complex64, complex128.
name A name for the operation (optional).
Returns
A Tensor. Has the same type as x.

If x is a SparseTensor, returns SparseTensor(x.indices, tf.math.negative(x.values, ...), x.dense_shape)

__nonzero__

View source

Dummy method to prevent a tensor from being used as a Python bool.

This is the Python 2.x counterpart to __bool__() above.

Raises
TypeError.

__or__

View source

Returns the truth value of x OR y element-wise.

Note: math.logical_or supports broadcasting. More about broadcasting here
Args
x A Tensor of type bool.
y A Tensor of type bool.
name A name for the operation (optional).
Returns
A Tensor of type bool.

__pow__

View source

Computes the power of one value to another.

Given a tensor x and a tensor y, this operation computes \(x^y\) for corresponding elements in x and y. For example:

x = tf.constant([[2, 2], [3, 3]])
y = tf.constant([[8, 16], [2, 3]])
tf.pow(x, y)  # [[256, 65536], [9, 27]]
Args
x A Tensor of type float16, float32, float64, int32, int64, complex64, or complex128.
y A Tensor of type float16, float32, float64, int32, int64, complex64, or complex128.
name A name for the operation (optional).
Returns
A Tensor.

__radd__

View source

Dispatches to add for strings and add_v2 for all other types.

__rand__

View source

Returns the truth value of x AND y element-wise.

Note: math.logical_and supports broadcasting. More about broadcasting here
Args
x A Tensor of type bool.
y A Tensor of type bool.
name A name for the operation (optional).
Returns
A Tensor of type bool.

__rdiv__

View source

Divide two values using Python 2 semantics.

Used for Tensor.div.

Args
x Tensor numerator of real numeric type.
y Tensor denominator of real numeric type.
name A name for the operation (optional).
Returns
x / y returns the quotient of x and y.

__rfloordiv__

View source

Divides x / y elementwise, rounding toward the most negative integer.

The same as tf.compat.v1.div(x,y) for integers, but uses tf.floor(tf.compat.v1.div(x,y)) for floating point arguments so that the result is always an integer (though possibly an integer represented as floating point). This op is generated by x // y floor division in Python 3 and in Python 2.7 with from __future__ import division.

x and y must have the same type, and the result will have the same type as well.

Args
x Tensor numerator of real numeric type.
y Tensor denominator of real numeric type.
name A name for the operation (optional).
Returns
x / y rounded down.
Raises
TypeError If the inputs are complex.

__rmatmul__

View source

Multiplies matrix a by matrix b, producing a * b.

The inputs must, following any transpositions, be tensors of rank >= 2 where the inner 2 dimensions specify valid matrix multiplication arguments, and any further outer dimensions match.

Both matrices must be of the same type. The supported types are: float16, float32, float64, int32, complex64, complex128.

Either matrix can be transposed or adjointed (conjugated and transposed) on the fly by setting one of the corresponding flag to True. These are False by default.

If one or both of the matrices contain a lot of zeros, a more efficient multiplication algorithm can be used by setting the corresponding a_is_sparse or b_is_sparse flag to True. These are False by default. This optimization is only available for plain matrices (rank-2 tensors) with datatypes bfloat16 or float32.

For example:

# 2-D tensor `a`
# [[1, 2, 3],
#  [4, 5, 6]]
a = tf.constant([1, 2, 3, 4, 5, 6], shape=[2, 3])

# 2-D tensor `b`
# [[ 7,  8],
#  [ 9, 10],
#  [11, 12]]
b = tf.constant([7, 8, 9, 10, 11, 12], shape=[3, 2])

# `a` * `b`
# [[ 58,  64],
#  [139, 154]]
c = tf.matmul(a, b)


# 3-D tensor `a`
# [[[ 1,  2,  3],
#   [ 4,  5,  6]],
#  [[ 7,  8,  9],
#   [10, 11, 12]]]
a = tf.constant(np.arange(1, 13, dtype=np.int32),
                shape=[2, 2, 3])

# 3-D tensor `b`
# [[[13, 14],
#   [15, 16],
#   [17, 18]],
#  [[19, 20],
#   [21, 22],
#   [23, 24]]]
b = tf.constant(np.arange(13, 25, dtype=np.int32),
                shape=[2, 3, 2])

# `a` * `b`
# [[[ 94, 100],
#   [229, 244]],
#  [[508, 532],
#   [697, 730]]]
c = tf.matmul(a, b)

# Since python >= 3.5 the @ operator is supported (see PEP 465).
# In TensorFlow, it simply calls the `tf.matmul()` function, so the
# following lines are equivalent:
d = a @ b @ [[10.], [11.]]
d = tf.matmul(tf.matmul(a, b), [[10.], [11.]])
Args
a Tensor of type float16, float32, float64, int32, complex64, complex128 and rank > 1.
b Tensor with same type and rank as a.
transpose_a If True, a is transposed before multiplication.
transpose_b If True, b is transposed before multiplication.
adjoint_a If True, a is conjugated and transposed before multiplication.
adjoint_b If True, b is conjugated and transposed before multiplication.
a_is_sparse If True, a is treated as a sparse matrix.
b_is_sparse If True, b is treated as a sparse matrix.
name Name for the operation (optional).
Returns
A Tensor of the same type as a and b where each inner-most matrix is the product of the corresponding matrices in a and b, e.g. if all transpose or adjoint attributes are False:

output[..., i, j] = sum_k (a[..., i, k] * b[..., k, j]), for all indices i, j.

Note This is matrix product, not element-wise product.
Raises
ValueError If transpose_a and adjoint_a, or transpose_b and adjoint_b are both set to True.

__rmod__

View source

Returns element-wise remainder of division. When x < 0 xor y < 0 is

true, this follows Python semantics in that the result here is consistent with a flooring divide. E.g. floor(x / y) * y + mod(x, y) = x.

Note: math.floormod supports broadcasting. More about broadcasting here
Args
x A Tensor. Must be one of the following types: int32, int64, bfloat16, half, float32, float64.
y A Tensor. Must have the same type as x.
name A name for the operation (optional).
Returns
A Tensor. Has the same type as x.

__rmul__

View source

Dispatches cwise mul for "DenseDense" and "DenseSparse".

__ror__

View source

Returns the truth value of x OR y element-wise.

Note: math.logical_or supports broadcasting. More about broadcasting here
Args
x A Tensor of type bool.
y A Tensor of type bool.
name A name for the operation (optional).
Returns
A Tensor of type bool.

__rpow__

View source

Computes the power of one value to another.

Given a tensor x and a tensor y, this operation computes \(x^y\) for corresponding elements in x and y. For example:

x = tf.constant([[2, 2], [3, 3]])
y = tf.constant([[8, 16], [2, 3]])
tf.pow(x, y)  # [[256, 65536], [9, 27]]
Args
x A Tensor of type float16, float32, float64, int32, int64, complex64, or complex128.
y A Tensor of type float16, float32, float64, int32, int64, complex64, or complex128.
name A name for the operation (optional).
Returns
A Tensor.

__rsub__

View source

Returns x - y element-wise.

Note: Subtract supports broadcasting. More about broadcasting here
Args
x A Tensor. Must be one of the following types: bfloat16, half, float32, float64, uint8, int8, uint16, int16, int32, int64, complex64, complex128.
y A Tensor. Must have the same type as x.
name A name for the operation (optional).
Returns
A Tensor. Has the same type as x.

__rtruediv__

View source

__rxor__

View source

Logical XOR function.

x ^ y = (x | y) & ~(x & y)

Inputs are tensor and if the tensors contains more than one element, an element-wise logical XOR is computed.

Usage:

x = tf.constant([False, False, True, True], dtype = tf.bool)
y = tf.constant([False, True, False, True], dtype = tf.bool)
z = tf.logical_xor(x, y, name="LogicalXor")
#  here z = [False  True  True False]
Args
x A Tensor type bool.
y A Tensor of type bool.
Returns
A Tensor of type bool with the same size as that of x or y.

__sub__

View source

Returns x - y element-wise.

Note: Subtract supports broadcasting. More about broadcasting here
Args
x A Tensor. Must be one of the following types: bfloat16, half, float32, float64, uint8, int8, uint16, int16, int32, int64, complex64, complex128.
y A Tensor. Must have the same type as x.
name A name for the operation (optional).
Returns
A Tensor. Has the same type as x.

__truediv__

View source

__xor__

View source

Logical XOR function.

x ^ y = (x | y) & ~(x & y)

Inputs are tensor and if the tensors contains more than one element, an element-wise logical XOR is computed.

Usage:

x = tf.constant([False, False, True, True], dtype = tf.bool)
y = tf.constant([False, True, False, True], dtype = tf.bool)
z = tf.logical_xor(x, y, name="LogicalXor")
#  here z = [False  True  True False]
Args
x A Tensor type bool.
y A Tensor of type bool.
Returns
A Tensor of type bool with the same size as that of x or y.

Class Variables

  • OVERLOADABLE_OPERATORS

© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/Tensor