View source on GitHub |

Stacks a list of rank-`R`

tensors into one rank-`(R+1)`

tensor.

tf.stack( values, axis=0, name='stack' )

Packs the list of tensors in `values`

into a tensor with rank one higher than each tensor in `values`

, by packing them along the `axis`

dimension. Given a list of length `N`

of tensors of shape `(A, B, C)`

;

if `axis == 0`

then the `output`

tensor will have the shape `(N, A, B, C)`

. if `axis == 1`

then the `output`

tensor will have the shape `(A, N, B, C)`

. Etc.

x = tf.constant([1, 4]) y = tf.constant([2, 5]) z = tf.constant([3, 6]) tf.stack([x, y, z]) # [[1, 4], [2, 5], [3, 6]] (Pack along first dim.) tf.stack([x, y, z], axis=1) # [[1, 2, 3], [4, 5, 6]]

This is the opposite of unstack. The numpy equivalent is

tf.stack([x, y, z]) = np.stack([x, y, z])

Args | |
---|---|

`values` | A list of `Tensor` objects with the same shape and type. |

`axis` | An `int` . The axis to stack along. Defaults to the first dimension. Negative values wrap around, so the valid range is `[-(R+1), R+1)` . |

`name` | A name for this operation (optional). |

Returns | |
---|---|

`output` | A stacked `Tensor` with the same type as `values` . |

Raises | |
---|---|

`ValueError` | If `axis` is out of the range [-(R+1), R+1). |

© 2020 The TensorFlow Authors. All rights reserved.

Licensed under the Creative Commons Attribution License 3.0.

Code samples licensed under the Apache 2.0 License.

https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/stack