W3cubDocs

/TensorFlow 1.15

tf.data.experimental.get_single_element

View source on GitHub

Returns the single element in dataset as a nested structure of tensors.

This function enables you to use a tf.data.Dataset in a stateless "tensor-in tensor-out" expression, without creating a tf.compat.v1.data.Iterator. This can be useful when your preprocessing transformations are expressed as a Dataset, and you want to use the transformation at serving time. For example:

input_batch = tf.compat.v1.placeholder(tf.string, shape=[BATCH_SIZE])

def preprocessing_fn(input_str):
  # ...
  return image, label

dataset = (tf.data.Dataset.from_tensor_slices(input_batch)
           .map(preprocessing_fn, num_parallel_calls=BATCH_SIZE)
           .batch(BATCH_SIZE))

image_batch, label_batch = tf.data.experimental.get_single_element(dataset)
Args
dataset A tf.data.Dataset object containing a single element.
Returns
A nested structure of tf.Tensor objects, corresponding to the single element of dataset.
Raises
TypeError if dataset is not a tf.data.Dataset object. InvalidArgumentError (at runtime): if dataset does not contain exactly one element.

© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/data/experimental/get_single_element