W3cubDocs

/TensorFlow 1.15

tf.data.experimental.Optional

Wraps a value that may/may not be present at runtime.

An Optional can represent the result of an operation that may fail as a value, rather than raising an exception and halting execution. For example, tf.data.experimental.get_next_as_optional returns an Optional that either contains the next value from a tf.compat.v1.data.Iterator if one exists, or a "none" value that indicates the end of the sequence has been reached.

Optional can only be used by values that are convertible to Tensor or CompositeTensor.

Attributes
value_structure The structure of the components of this optional.

Methods

from_value

View source

Returns an Optional that wraps the given value.

Args
value A value to wrap. The value must be convertible to Tensor or CompositeTensor.
Returns
An Optional that wraps value.

get_value

View source

Returns the value wrapped by this optional.

If this optional does not have a value (i.e. self.has_value() evaluates to False), this operation will raise tf.errors.InvalidArgumentError at runtime.

Args
name (Optional.) A name for the created operation.
Returns
The wrapped value.

has_value

View source

Returns a tensor that evaluates to True if this optional has a value.

Args
name (Optional.) A name for the created operation.
Returns
A scalar tf.Tensor of type tf.bool.

none_from_structure

View source

Returns an Optional that has no value.

Note: This method takes an argument that defines the structure of the value that would be contained in the returned Optional if it had a value.
Args
value_structure A Structure object representing the structure of the components of this optional.
Returns
An Optional that has no value.

© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/data/experimental/Optional