Removes dimensions of size 1 from the shape of a tensor. (deprecated arguments)

tf.compat.v1.squeeze( input, axis=None, name=None, squeeze_dims=None )

Given a tensor `input`

, this operation returns a tensor of the same type with all dimensions of size 1 removed. If you don't want to remove all size 1 dimensions, you can remove specific size 1 dimensions by specifying `axis`

.

# 't' is a tensor of shape [1, 2, 1, 3, 1, 1] t = tf.ones([1, 2, 1, 3, 1, 1]) print(tf.shape(tf.squeeze(t)).numpy()) [2 3]

Or, to remove specific size 1 dimensions:

# 't' is a tensor of shape [1, 2, 1, 3, 1, 1] t = tf.ones([1, 2, 1, 3, 1, 1]) print(tf.shape(tf.squeeze(t, [2, 4])).numpy()) [1 2 3 1]

Note:if`input`

is a`tf.RaggedTensor`

, then this operation takes`O(N)`

time, where`N`

is the number of elements in the squeezed dimensions.

Args | |
---|---|

`input` | A `Tensor` . The `input` to squeeze. |

`axis` | An optional list of `ints` . Defaults to `[]` . If specified, only squeezes the dimensions listed. The dimension index starts at 0. It is an error to squeeze a dimension that is not 1. Must be in the range `[-rank(input), rank(input))` . Must be specified if `input` is a `RaggedTensor` . |

`name` | A name for the operation (optional). |

`squeeze_dims` | Deprecated keyword argument that is now axis. |

Returns | |
---|---|

A `Tensor` . Has the same type as `input` . Contains the same data as `input` , but has one or more dimensions of size 1 removed. |

Raises | |
---|---|

`ValueError` | When both `squeeze_dims` and `axis` are specified. |

© 2020 The TensorFlow Authors. All rights reserved.

Licensed under the Creative Commons Attribution License 3.0.

Code samples licensed under the Apache 2.0 License.

https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/compat/v1/squeeze