W3cubDocs

/TensorFlow 2.3

tf.distribute.DistributedDataset

Represents a dataset distributed among devices and machines.

A tf.distribute.DistributedDataset could be thought of as a "distributed" dataset. When you use tf.distribute API to scale training to multiple devices or machines, you also need to distribute the input data, which leads to a tf.distribute.DistributedDataset instance, instead of a tf.data.Dataset instance in the non-distributed case. In TF 2.x, tf.distribute.DistributedDataset objects are Python iterables.

Note: tf.distribute.DistributedDataset instances are not of type tf.data.Dataset. It only supports two usages we will mention below: iteration and element_spec. We don't support any other APIs to transform or inspect the dataset.

There are two APIs to create a tf.distribute.DistributedDataset object: tf.distribute.Strategy.experimental_distribute_dataset(dataset)and tf.distribute.Strategy.experimental_distribute_datasets_from_function(dataset_fn). When to use which? When you have a tf.data.Dataset instance, and the regular batch splitting (i.e. re-batch the input tf.data.Dataset instance with a new batch size that is equal to the global batch size divided by the number of replicas in sync) and autosharding (i.e. the tf.data.experimental.AutoShardPolicy options) work for you, use the former API. Otherwise, if you are not using a canonical tf.data.Dataset instance, or you would like to customize the batch splitting or sharding, you can wrap these logic in a dataset_fn and use the latter API. Both API handles prefetch to device for the user. For more details and examples, follow the links to the APIs.

There are two main usages of a DistributedDataset object:

  1. Iterate over it to generate the input for a single device or multiple devices, which is a tf.distribute.DistributedValues instance. To do this, you can:

    • use a pythonic for-loop construct:
global_batch_size = 2
strategy = tf.distribute.MirroredStrategy()
dataset = tf.data.Dataset.from_tensors(([1.],[1.])).repeat(4).batch(global_batch_size)
dist_dataset = strategy.experimental_distribute_dataset(dataset)
@tf.function
def train_step(input):
  features, labels = input
  return labels - 0.3 * features
for x in dist_dataset:
  # train_step trains the model using the dataset elements
  loss = strategy.run(train_step, args=(x,))
  print("Loss is", loss)
    Loss is tf.Tensor(
    [[0.7]
     [0.7]], shape=(2, 1), dtype=float32)
    Loss is tf.Tensor(
    [[0.7]
     [0.7]], shape=(2, 1), dtype=float32)
    
Placing the loop inside a <a href="../../tf/function"><code>tf.function</code></a> will give a performance boost.
However `break` and `return` are currently not supported if the loop is
placed inside a <a href="../../tf/function"><code>tf.function</code></a>. We also don't support placing the loop
inside a <a href="../../tf/function"><code>tf.function</code></a> when using
<a href="../../tf/distribute/experimental/MultiWorkerMirroredStrategy"><code>tf.distribute.experimental.MultiWorkerMirroredStrategy</code></a> or
<a href="../../tf/distribute/experimental/TPUStrategy"><code>tf.distribute.experimental.TPUStrategy</code></a> with multiple workers.
global_batch_size = 4
strategy = tf.distribute.MirroredStrategy()
train_dataset = tf.data.Dataset.from_tensors(([1.],[1.])).repeat(50).batch(global_batch_size)
train_dist_dataset = strategy.experimental_distribute_dataset(train_dataset)
@tf.function
def distributed_train_step(dataset_inputs):
  def train_step(input):
    loss = tf.constant(0.1)
    return loss
  per_replica_losses = strategy.run(train_step, args=(dataset_inputs,))
  return strategy.reduce(tf.distribute.ReduceOp.SUM, per_replica_losses,axis=None)
EPOCHS = 2
STEPS = 3
for epoch in range(EPOCHS):
  total_loss = 0.0
  num_batches = 0
  dist_dataset_iterator = iter(train_dist_dataset)
  for _ in range(STEPS):
    total_loss += distributed_train_step(next(dist_dataset_iterator))
    num_batches += 1
  average_train_loss = total_loss / num_batches
  template = ("Epoch {}, Loss: {}")
  print (template.format(epoch+1, average_train_loss))
    Epoch 1, Loss: 0.10000000894069672
    Epoch 2, Loss: 0.10000000894069672
    

To achieve a performance improvement, you can also wrap the strategy.run call with a tf.range inside a tf.function. This runs multiple steps in a tf.function. Autograph will convert it to a tf.while_loop on the worker. However, it is less flexible comparing with running a single step inside tf.function. For example, you cannot run things eagerly or arbitrary python code within the steps.

  1. Inspect the tf.TypeSpec of the data generated by DistributedDataset.

    tf.distribute.DistributedDataset generates tf.distribute.DistributedValues as input to the devices. If you pass the input to a tf.function and would like to specify the shape and type of each Tensor argument to the function, you can pass a tf.TypeSpec object to the input_signature argument of the tf.function. To get the tf.TypeSpec of the input, you can use the element_spec property of the tf.distribute.DistributedDataset or tf.distribute.DistributedIterator object.

    For example:

global_batch_size = 2
epochs = 1
steps_per_epoch = 1
mirrored_strategy = tf.distribute.MirroredStrategy()
dataset = tf.data.Dataset.from_tensors(([2.])).repeat(100).batch(global_batch_size)
dist_dataset = mirrored_strategy.experimental_distribute_dataset(dataset)
@tf.function(input_signature=[dist_dataset.element_spec])
def train_step(per_replica_inputs):
  def step_fn(inputs):
    return tf.square(inputs)
  return mirrored_strategy.run(step_fn, args=(per_replica_inputs,))
for _ in range(epochs):
  iterator = iter(dist_dataset)
  for _ in range(steps_per_epoch):
    output = train_step(next(iterator))
    print(output)
  tf.Tensor(
  [[4.]
   [4.]], shape=(2, 1), dtype=float32)
  

Visit the tutorial on distributed input for more examples and caveats.

Attributes
element_spec The type specification of an element of this tf.distribute.DistributedDataset.
global_batch_size = 16
strategy = tf.distribute.MirroredStrategy()
dataset = tf.data.Dataset.from_tensors(([1.],[2])).repeat(100).batch(global_batch_size)
dist_dataset = strategy.experimental_distribute_dataset(dataset)
dist_dataset.element_spec
(TensorSpec(shape=(None, 1), dtype=tf.float32, name=None),
TensorSpec(shape=(None, 1), dtype=tf.int32, name=None))

The above example corresponds to the case where you have only one device. If you have two devices, for example,

strategy = tf.distribute.MirroredStrategy(['/gpu:0', '/gpu:1'])

Then the final line will print out:

(PerReplicaSpec(TensorSpec(shape=(None, 1), dtype=tf.float32, name=None),
TensorSpec(shape=(None, 1), dtype=tf.float32, name=None)),
PerReplicaSpec(TensorSpec(shape=(None, 1), dtype=tf.int32, name=None),
TensorSpec(shape=(None, 1), dtype=tf.int32, name=None)))

Methods

__iter__

View source

Creates an iterator for the tf.distribute.DistributedDataset.

The returned iterator implements the Python Iterator protocol.

Example usage:

global_batch_size = 4
strategy = tf.distribute.MirroredStrategy()
dataset = tf.data.Dataset.from_tensor_slices([1, 2, 3, 4]).repeat().batch(global_batch_size)
distributed_iterator = iter(strategy.experimental_distribute_dataset(dataset))
print(next(distributed_iterator))
tf.Tensor([1 2 3 4], shape=(4,), dtype=int32)

The above example corresponds to the case where you have only one device. If you have two devices, for example,

strategy = tf.distribute.MirroredStrategy(['/gpu:0', '/gpu:1'])

Then the final line will print out:

PerReplica:{
  0: tf.Tensor([1 2], shape=(2,), dtype=int32),
  1: tf.Tensor([3 4], shape=(2,), dtype=int32)
}
Returns
An tf.distribute.DistributedIterator instance for the given tf.distribute.DistributedDataset object to enumerate over the distributed data.

© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/distribute/DistributedDataset