View source on GitHub |
Sigmoid activation function, sigmoid(x) = 1 / (1 + exp(-x))
.
tf.keras.activations.sigmoid( x )
Applies the sigmoid activation function. For small values (<-5), sigmoid
returns a value close to zero, and for large values (>5) the result of the function gets close to 1.
Sigmoid is equivalent to a 2-element Softmax, where the second element is assumed to be zero. The sigmoid function always returns a value between 0 and 1.
a = tf.constant([-20, -1.0, 0.0, 1.0, 20], dtype = tf.float32) b = tf.keras.activations.sigmoid(a) b.numpy() array([2.0611537e-09, 2.6894143e-01, 5.0000000e-01, 7.3105860e-01, 1.0000000e+00], dtype=float32)
Arguments | |
---|---|
x | Input tensor. |
Returns | |
---|---|
Tensor with the sigmoid activation: 1 / (1 + exp(-x)) . |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/keras/activations/sigmoid