A layer that uses tf.einsum as the backing computation.

Inherits From: `Layer`

tf.keras.layers.experimental.EinsumDense( equation, output_shape, activation=None, bias_axes=None, kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, **kwargs )

This layer can perform einsum calculations of arbitrary dimensionality.

Arguments | |
---|---|

`equation` | An equation describing the einsum to perform. This equation must be a valid einsum string of the form `ab,bc->ac` , `...ab,bc->...ac` , or `ab...,bc->ac...` where 'ab', 'bc', and 'ac' can be any valid einsum axis expression sequence. |

`output_shape` | The expected shape of the output tensor (excluding the batch dimension and any dimensions represented by ellipses). You can specify None for any dimension that is unknown or can be inferred from the input shape. |

`activation` | Activation function to use. If you don't specify anything, no activation is applied (that is, a "linear" activation: `a(x) = x` ). |

`bias_axes` | A string containing the output dimension(s) to apply a bias to. Each character in the `bias_axes` string should correspond to a character in the output portion of the `equation` string. |

`kernel_initializer` | Initializer for the `kernel` weights matrix. |

`bias_initializer` | Initializer for the bias vector. |

`kernel_regularizer` | Regularizer function applied to the `kernel` weights matrix. |

`bias_regularizer` | Regularizer function applied to the bias vector. |

`activity_regularizer` | Regularizer function applied to the output of the layer (its "activation").. |

`kernel_constraint` | Constraint function applied to the `kernel` weights matrix. |

`bias_constraint` | Constraint function applied to the bias vector. |

**Biased dense layer with einsums**

This example shows how to instantiate a standard Keras dense layer using einsum operations. This example is equivalent to `tf.keras.layers.Dense(64, use_bias=True)`

.

layer = EinsumDense("ab,bc->ac", output_shape=64, bias_axes="c") input_tensor = tf.keras.Input(shape=[32]) output_tensor = layer(input_tensor) output_tensor <tf.Tensor '...' shape=(None, 64) dtype=...>

**Applying a dense layer to a sequence**

This example shows how to instantiate a layer that applies the same dense operation to every element in a sequence. Here, the 'output_shape' has two values (since there are two non-batch dimensions in the output); the first dimension in the output_shape is `None`

, because the sequence dimension `b`

has an unknown shape.

layer = EinsumDense("abc,cd->abd", output_shape=(None, 64), bias_axes="d") input_tensor = tf.keras.Input(shape=[32, 128]) output_tensor = layer(input_tensor) output_tensor <tf.Tensor '...' shape=(None, 32, 64) dtype=...>

**Applying a dense layer to a sequence using ellipses**

This example shows how to instantiate a layer that applies the same dense operation to every element in a sequence, but uses the ellipsis notation instead of specifying the batch and sequence dimensions.

Because we are using ellipsis notation and have specified only one axis, the output_shape arg is a single value. When instantiated in this way, the layer can handle any number of sequence dimensions - including the case where no sequence dimension exists.

layer = EinsumDense("...x,xy->...y", output_shape=64, bias_axes="y") input_tensor = tf.keras.Input(shape=[32, 128]) output_tensor = layer(input_tensor) output_tensor <tf.Tensor '...' shape=(None, 32, 64) dtype=...>

© 2020 The TensorFlow Authors. All rights reserved.

Licensed under the Creative Commons Attribution License 3.0.

Code samples licensed under the Apache 2.0 License.

https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/keras/layers/experimental/EinsumDense