View source on GitHub |
Optimizer that implements the Adam algorithm.
Inherits From: Optimizer
tf.keras.optimizers.Adam( learning_rate=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-07, amsgrad=False, name='Adam', **kwargs )
Adam optimization is a stochastic gradient descent method that is based on adaptive estimation of first-order and second-order moments.
According to Kingma et al., 2014, the method is "computationally efficient, has little memory requirement, invariant to diagonal rescaling of gradients, and is well suited for problems that are large in terms of data/parameters".
Args | |
---|---|
learning_rate | A Tensor , floating point value, or a schedule that is a tf.keras.optimizers.schedules.LearningRateSchedule , or a callable that takes no arguments and returns the actual value to use, The learning rate. Defaults to 0.001. |
beta_1 | A float value or a constant float tensor, or a callable that takes no arguments and returns the actual value to use. The exponential decay rate for the 1st moment estimates. Defaults to 0.9. |
beta_2 | A float value or a constant float tensor, or a callable that takes no arguments and returns the actual value to use, The exponential decay rate for the 2nd moment estimates. Defaults to 0.999. |
epsilon | A small constant for numerical stability. This epsilon is "epsilon hat" in the Kingma and Ba paper (in the formula just before Section 2.1), not the epsilon in Algorithm 1 of the paper. Defaults to 1e-7. |
amsgrad | Boolean. Whether to apply AMSGrad variant of this algorithm from the paper "On the Convergence of Adam and beyond". Defaults to False . |
name | Optional name for the operations created when applying gradients. Defaults to "Adam" . |
**kwargs | Keyword arguments. Allowed to be one of "clipnorm" or "clipvalue" . "clipnorm" (float) clips gradients by norm; "clipvalue" (float) clips gradients by value. |
opt = tf.keras.optimizers.Adam(learning_rate=0.1) var1 = tf.Variable(10.0) loss = lambda: (var1 ** 2)/2.0 # d(loss)/d(var1) == var1 step_count = opt.minimize(loss, [var1]).numpy() # The first step is `-learning_rate*sign(grad)` var1.numpy() 9.9
amsgrad
.The default value of 1e-7 for epsilon might not be a good default in general. For example, when training an Inception network on ImageNet a current good choice is 1.0 or 0.1. Note that since Adam uses the formulation just before Section 2.1 of the Kingma and Ba paper rather than the formulation in Algorithm 1, the "epsilon" referred to here is "epsilon hat" in the paper.
The sparse implementation of this algorithm (used when the gradient is an IndexedSlices object, typically because of tf.gather
or an embedding lookup in the forward pass) does apply momentum to variable slices even if they were not used in the forward pass (meaning they have a gradient equal to zero). Momentum decay (beta1) is also applied to the entire momentum accumulator. This means that the sparse behavior is equivalent to the dense behavior (in contrast to some momentum implementations which ignore momentum unless a variable slice was actually used).
Args | |
---|---|
name | A non-empty string. The name to use for accumulators created for the optimizer. |
**kwargs | keyword arguments. Allowed to be {clipnorm , clipvalue , lr , decay }. clipnorm is clip gradients by norm; clipvalue is clip gradients by value, decay is included for backward compatibility to allow time inverse decay of learning rate. lr is included for backward compatibility, recommended to use learning_rate instead. |
Raises | |
---|---|
ValueError | If name is malformed. |
Attributes | |
---|---|
iterations | Variable. The number of training steps this Optimizer has run. |
weights | Returns variables of this Optimizer based on the order created. |
add_slot
add_slot( var, slot_name, initializer='zeros' )
Add a new slot variable for var
.
add_weight
add_weight( name, shape, dtype=None, initializer='zeros', trainable=None, synchronization=tf.VariableSynchronization.AUTO, aggregation=tf.compat.v1.VariableAggregation.NONE )
apply_gradients
apply_gradients( grads_and_vars, name=None, experimental_aggregate_gradients=True )
Apply gradients to variables.
This is the second part of minimize()
. It returns an Operation
that applies gradients.
The method sums gradients from all replicas in the presence of tf.distribute.Strategy
by default. You can aggregate gradients yourself by passing experimental_aggregate_gradients=False
.
grads = tape.gradient(loss, vars) grads = tf.distribute.get_replica_context().all_reduce('sum', grads) # Processing aggregated gradients. optimizer.apply_gradients(zip(grads, vars), experimental_aggregate_gradients=False)
Args | |
---|---|
grads_and_vars | List of (gradient, variable) pairs. |
name | Optional name for the returned operation. Default to the name passed to the Optimizer constructor. |
experimental_aggregate_gradients | Whether to sum gradients from different replicas in the presense of tf.distribute.Strategy . If False, it's user responsibility to aggregate the gradients. Default to True. |
Returns | |
---|---|
An Operation that applies the specified gradients. The iterations will be automatically increased by 1. |
Raises | |
---|---|
TypeError | If grads_and_vars is malformed. |
ValueError | If none of the variables have gradients. |
from_config
@classmethod from_config( config, custom_objects=None )
Creates an optimizer from its config.
This method is the reverse of get_config
, capable of instantiating the same optimizer from the config dictionary.
Arguments | |
---|---|
config | A Python dictionary, typically the output of get_config. |
custom_objects | A Python dictionary mapping names to additional Python objects used to create this optimizer, such as a function used for a hyperparameter. |
Returns | |
---|---|
An optimizer instance. |
get_config
get_config()
Returns the config of the optimizer.
An optimizer config is a Python dictionary (serializable) containing the configuration of an optimizer. The same optimizer can be reinstantiated later (without any saved state) from this configuration.
Returns | |
---|---|
Python dictionary. |
get_gradients
get_gradients( loss, params )
Returns gradients of loss
with respect to params
.
Arguments | |
---|---|
loss | Loss tensor. |
params | List of variables. |
Returns | |
---|---|
List of gradient tensors. |
Raises | |
---|---|
ValueError | In case any gradient cannot be computed (e.g. if gradient function not implemented). |
get_slot
get_slot( var, slot_name )
get_slot_names
get_slot_names()
A list of names for this optimizer's slots.
get_updates
get_updates( loss, params )
get_weights
get_weights()
Returns the current weights of the optimizer.
The weights of an optimizer are its state (ie, variables). This function returns the weight values associated with this optimizer as a list of Numpy arrays. The first value is always the iterations count of the optimizer, followed by the optimizer's state variables in the order they were created. The returned list can in turn be used to load state into similarly parameterized optimizers.
For example, the RMSprop optimizer for this simple model returns a list of three values-- the iteration count, followed by the root-mean-square value of the kernel and bias of the single Dense layer:
opt = tf.keras.optimizers.RMSprop() m = tf.keras.models.Sequential([tf.keras.layers.Dense(10)]) m.compile(opt, loss='mse') data = np.arange(100).reshape(5, 20) labels = np.zeros(5) print('Training'); results = m.fit(data, labels) Training ... len(opt.get_weights()) 3
Returns | |
---|---|
Weights values as a list of numpy arrays. |
minimize
minimize( loss, var_list, grad_loss=None, name=None )
Minimize loss
by updating var_list
.
This method simply computes gradient using tf.GradientTape
and calls apply_gradients()
. If you want to process the gradient before applying then call tf.GradientTape
and apply_gradients()
explicitly instead of using this function.
Args | |
---|---|
loss | A callable taking no arguments which returns the value to minimize. |
var_list | list or tuple of Variable objects to update to minimize loss , or a callable returning the list or tuple of Variable objects. Use callable when the variable list would otherwise be incomplete before minimize since the variables are created at the first time loss is called. |
grad_loss | Optional. A Tensor holding the gradient computed for loss . |
name | Optional name for the returned operation. |
Returns | |
---|---|
An Operation that updates the variables in var_list . The iterations will be automatically increased by 1. |
Raises | |
---|---|
ValueError | If some of the variables are not Variable objects. |
set_weights
set_weights( weights )
Set the weights of the optimizer.
The weights of an optimizer are its state (ie, variables). This function takes the weight values associated with this optimizer as a list of Numpy arrays. The first value is always the iterations count of the optimizer, followed by the optimizer's state variables in the order they are created. The passed values are used to set the new state of the optimizer.
For example, the RMSprop optimizer for this simple model takes a list of three values-- the iteration count, followed by the root-mean-square value of the kernel and bias of the single Dense layer:
opt = tf.keras.optimizers.RMSprop() m = tf.keras.models.Sequential([tf.keras.layers.Dense(10)]) m.compile(opt, loss='mse') data = np.arange(100).reshape(5, 20) labels = np.zeros(5) print('Training'); results = m.fit(data, labels) Training ... new_weights = [np.array(10), np.ones([20, 10]), np.zeros([10])] opt.set_weights(new_weights) opt.iterations <tf.Variable 'RMSprop/iter:0' shape=() dtype=int64, numpy=10>
Arguments | |
---|---|
weights | weight values as a list of numpy arrays. |
variables
variables()
Returns variables of this Optimizer based on the order created.
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/keras/optimizers/Adam