Computes the eigen decomposition of one or more square self-adjoint matrices.
tf.raw_ops.SelfAdjointEigV2( input, compute_v=True, name=None )
Computes the eigenvalues and (optionally) eigenvectors of each inner matrix in input
such that input[..., :, :] = v[..., :, :] * diag(e[..., :])
. The eigenvalues are sorted in non-decreasing order.
# a is a tensor. # e is a tensor of eigenvalues. # v is a tensor of eigenvectors. e, v = self_adjoint_eig(a) e = self_adjoint_eig(a, compute_v=False)
Args | |
---|---|
input | A Tensor . Must be one of the following types: float64 , float32 , half , complex64 , complex128 . Tensor input of shape [N, N] . |
compute_v | An optional bool . Defaults to True . If True then eigenvectors will be computed and returned in v . Otherwise, only the eigenvalues will be computed. |
name | A name for the operation (optional). |
Returns | |
---|---|
A tuple of Tensor objects (e, v). | |
e | A Tensor . Has the same type as input . |
v | A Tensor . Has the same type as input . |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/raw_ops/SelfAdjointEigV2