Support for training models.
See the Training guide.
experimental
module: Public API for tf.train.experimental namespace.
queue_runner
module: Public API for tf.train.queue_runner namespace.
class AdadeltaOptimizer
: Optimizer that implements the Adadelta algorithm.
class AdagradDAOptimizer
: Adagrad Dual Averaging algorithm for sparse linear models.
class AdagradOptimizer
: Optimizer that implements the Adagrad algorithm.
class AdamOptimizer
: Optimizer that implements the Adam algorithm.
class BytesList
: A ProtocolMessage
class Checkpoint
: Groups trackable objects, saving and restoring them.
class CheckpointManager
: Manages multiple checkpoints by keeping some and deleting unneeded ones.
class CheckpointOptions
: Options for constructing a Checkpoint.
class CheckpointSaverHook
: Saves checkpoints every N steps or seconds.
class CheckpointSaverListener
: Interface for listeners that take action before or after checkpoint save.
class ChiefSessionCreator
: Creates a tf.compat.v1.Session for a chief.
class ClusterDef
: A ProtocolMessage
class ClusterSpec
: Represents a cluster as a set of "tasks", organized into "jobs".
class Coordinator
: A coordinator for threads.
class Example
: A ProtocolMessage
class ExponentialMovingAverage
: Maintains moving averages of variables by employing an exponential decay.
class Feature
: A ProtocolMessage
class FeatureList
: A ProtocolMessage
class FeatureLists
: A ProtocolMessage
class Features
: A ProtocolMessage
class FeedFnHook
: Runs feed_fn
and sets the feed_dict
accordingly.
class FinalOpsHook
: A hook which evaluates Tensors
at the end of a session.
class FloatList
: A ProtocolMessage
class FtrlOptimizer
: Optimizer that implements the FTRL algorithm.
class GlobalStepWaiterHook
: Delays execution until global step reaches wait_until_step
.
class GradientDescentOptimizer
: Optimizer that implements the gradient descent algorithm.
class Int64List
: A ProtocolMessage
class JobDef
: A ProtocolMessage
class LoggingTensorHook
: Prints the given tensors every N local steps, every N seconds, or at end.
class LooperThread
: A thread that runs code repeatedly, optionally on a timer.
class MomentumOptimizer
: Optimizer that implements the Momentum algorithm.
class MonitoredSession
: Session-like object that handles initialization, recovery and hooks.
class NanLossDuringTrainingError
: Unspecified run-time error.
class NanTensorHook
: Monitors the loss tensor and stops training if loss is NaN.
class Optimizer
: Base class for optimizers.
class ProfilerHook
: Captures CPU/GPU profiling information every N steps or seconds.
class ProximalAdagradOptimizer
: Optimizer that implements the Proximal Adagrad algorithm.
class ProximalGradientDescentOptimizer
: Optimizer that implements the proximal gradient descent algorithm.
class QueueRunner
: Holds a list of enqueue operations for a queue, each to be run in a thread.
class RMSPropOptimizer
: Optimizer that implements the RMSProp algorithm (Tielemans et al.
class Saver
: Saves and restores variables.
class SaverDef
: A ProtocolMessage
class Scaffold
: Structure to create or gather pieces commonly needed to train a model.
class SecondOrStepTimer
: Timer that triggers at most once every N seconds or once every N steps.
class SequenceExample
: A ProtocolMessage
class Server
: An in-process TensorFlow server, for use in distributed training.
class ServerDef
: A ProtocolMessage
class SessionCreator
: A factory for tf.Session.
class SessionManager
: Training helper that restores from checkpoint and creates session.
class SessionRunArgs
: Represents arguments to be added to a Session.run()
call.
class SessionRunContext
: Provides information about the session.run()
call being made.
class SessionRunHook
: Hook to extend calls to MonitoredSession.run().
class SessionRunValues
: Contains the results of Session.run()
.
class SingularMonitoredSession
: Session-like object that handles initialization, restoring, and hooks.
class StepCounterHook
: Hook that counts steps per second.
class StopAtStepHook
: Hook that requests stop at a specified step.
class SummarySaverHook
: Saves summaries every N steps.
class Supervisor
: A training helper that checkpoints models and computes summaries.
class SyncReplicasOptimizer
: Class to synchronize, aggregate gradients and pass them to the optimizer.
class VocabInfo
: Vocabulary information for warm-starting.
class WorkerSessionCreator
: Creates a tf.compat.v1.Session for a worker.
MonitoredTrainingSession(...)
: Creates a MonitoredSession
for training.
NewCheckpointReader(...)
: A function that returns a CheckPointReader.
add_queue_runner(...)
: Adds a QueueRunner
to a collection in the graph. (deprecated)
assert_global_step(...)
: Asserts global_step_tensor
is a scalar int Variable
or Tensor
.
basic_train_loop(...)
: Basic loop to train a model.
batch(...)
: Creates batches of tensors in tensors
. (deprecated)
batch_join(...)
: Runs a list of tensors to fill a queue to create batches of examples. (deprecated)
checkpoint_exists(...)
: Checks whether a V1 or V2 checkpoint exists with the specified prefix. (deprecated)
checkpoints_iterator(...)
: Continuously yield new checkpoint files as they appear.
cosine_decay(...)
: Applies cosine decay to the learning rate.
cosine_decay_restarts(...)
: Applies cosine decay with restarts to the learning rate.
create_global_step(...)
: Create global step tensor in graph.
do_quantize_training_on_graphdef(...)
: A general quantization scheme is being developed in tf.contrib.quantize
. (deprecated)
exponential_decay(...)
: Applies exponential decay to the learning rate.
export_meta_graph(...)
: Returns MetaGraphDef
proto.
generate_checkpoint_state_proto(...)
: Generates a checkpoint state proto.
get_checkpoint_mtimes(...)
: Returns the mtimes (modification timestamps) of the checkpoints. (deprecated)
get_checkpoint_state(...)
: Returns CheckpointState proto from the "checkpoint" file.
get_global_step(...)
: Get the global step tensor.
get_or_create_global_step(...)
: Returns and create (if necessary) the global step tensor.
global_step(...)
: Small helper to get the global step.
import_meta_graph(...)
: Recreates a Graph saved in a MetaGraphDef
proto.
init_from_checkpoint(...)
: Replaces tf.Variable
initializers so they load from a checkpoint file.
input_producer(...)
: Output the rows of input_tensor
to a queue for an input pipeline. (deprecated)
inverse_time_decay(...)
: Applies inverse time decay to the initial learning rate.
latest_checkpoint(...)
: Finds the filename of latest saved checkpoint file.
limit_epochs(...)
: Returns tensor num_epochs
times and then raises an OutOfRange
error. (deprecated)
linear_cosine_decay(...)
: Applies linear cosine decay to the learning rate.
list_variables(...)
: Lists the checkpoint keys and shapes of variables in a checkpoint.
load_checkpoint(...)
: Returns CheckpointReader
for checkpoint found in ckpt_dir_or_file
.
load_variable(...)
: Returns the tensor value of the given variable in the checkpoint.
match_filenames_once(...)
: Save the list of files matching pattern, so it is only computed once.
maybe_batch(...)
: Conditionally creates batches of tensors based on keep_input
. (deprecated)
maybe_batch_join(...)
: Runs a list of tensors to conditionally fill a queue to create batches. (deprecated)
maybe_shuffle_batch(...)
: Creates batches by randomly shuffling conditionally-enqueued tensors. (deprecated)
maybe_shuffle_batch_join(...)
: Create batches by randomly shuffling conditionally-enqueued tensors. (deprecated)
natural_exp_decay(...)
: Applies natural exponential decay to the initial learning rate.
noisy_linear_cosine_decay(...)
: Applies noisy linear cosine decay to the learning rate.
piecewise_constant(...)
: Piecewise constant from boundaries and interval values.
piecewise_constant_decay(...)
: Piecewise constant from boundaries and interval values.
polynomial_decay(...)
: Applies a polynomial decay to the learning rate.
range_input_producer(...)
: Produces the integers from 0 to limit-1 in a queue. (deprecated)
remove_checkpoint(...)
: Removes a checkpoint given by checkpoint_prefix
. (deprecated)
replica_device_setter(...)
: Return a device function
to use when building a Graph for replicas.
sdca_fprint(...)
: Computes fingerprints of the input strings.
sdca_optimizer(...)
: Distributed version of Stochastic Dual Coordinate Ascent (SDCA) optimizer for
sdca_shrink_l1(...)
: Applies L1 regularization shrink step on the parameters.
shuffle_batch(...)
: Creates batches by randomly shuffling tensors. (deprecated)
shuffle_batch_join(...)
: Create batches by randomly shuffling tensors. (deprecated)
slice_input_producer(...)
: Produces a slice of each Tensor
in tensor_list
. (deprecated)
start_queue_runners(...)
: Starts all queue runners collected in the graph. (deprecated)
string_input_producer(...)
: Output strings (e.g. filenames) to a queue for an input pipeline. (deprecated)
summary_iterator(...)
: Returns a iterator for reading Event
protocol buffers from an event file.
update_checkpoint_state(...)
: Updates the content of the 'checkpoint' file. (deprecated)
warm_start(...)
: Warm-starts a model using the given settings.
write_graph(...)
: Writes a graph proto to a file.
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/compat/v1/train