An iterator over tf.distribute.DistributedDataset
.
tf.distribute.DistributedIterator
is the primary mechanism for enumerating elements of a tf.distribute.DistributedDataset
. It supports the Python Iterator protocol, which means it can be iterated over using a for-loop or by fetching individual elements explicitly via get_next()
.
You can create a tf.distribute.DistributedIterator
by calling iter
on a tf.distribute.DistributedDataset
or creating a python loop over a tf.distribute.DistributedDataset
.
Visit the tutorial on distributed input for more examples and caveats.
Attributes | |
---|---|
element_spec | The type specification of an element of tf.distribute.DistributedIterator . global_batch_size = 16 strategy = tf.distribute.MirroredStrategy(["GPU:0", "GPU:1"]) dataset = tf.data.Dataset.from_tensors(([1.],[2])).repeat(100).batch(global_batch_size) distributed_iterator = iter(strategy.experimental_distribute_dataset(dataset)) distributed_iterator.element_spec (PerReplicaSpec(TensorSpec(shape=(None, 1), dtype=tf.float32, name=None), TensorSpec(shape=(None, 1), dtype=tf.float32, name=None)), PerReplicaSpec(TensorSpec(shape=(None, 1), dtype=tf.int32, name=None), TensorSpec(shape=(None, 1), dtype=tf.int32, name=None))) |
get_next
get_next()
Returns the next input from the iterator for all replicas.
strategy = tf.distribute.MirroredStrategy(["GPU:0", "GPU:1"]) dataset = tf.data.Dataset.range(100).batch(2) dist_dataset = strategy.experimental_distribute_dataset(dataset) dist_dataset_iterator = iter(dist_dataset) @tf.function def one_step(input): return input step_num = 5 for _ in range(step_num): strategy.run(one_step, args=(dist_dataset_iterator.get_next(),)) strategy.experimental_local_results(dist_dataset_iterator.get_next()) (<tf.Tensor: shape=(1,), dtype=int64, numpy=array([10])>, <tf.Tensor: shape=(1,), dtype=int64, numpy=array([11])>)
Returns | |
---|---|
A single tf.Tensor or a tf.distribute.DistributedValues which contains the next input for all replicas. |
Raises | |
---|---|
tf.errors.OutOfRangeError : If the end of the iterator has been reached. |
get_next_as_optional
get_next_as_optional()
Returns a tf.experimental.Optional
that contains the next value for all replicas.
If the tf.distribute.DistributedIterator
has reached the end of the sequence, the returned tf.experimental.Optional
will have no value.
strategy = tf.distribute.MirroredStrategy(["GPU:0", "GPU:1"]) global_batch_size = 2 steps_per_loop = 2 dataset = tf.data.Dataset.range(10).batch(global_batch_size) distributed_iterator = iter( strategy.experimental_distribute_dataset(dataset)) def step_fn(x): # train the model with inputs return x @tf.function def train_fn(distributed_iterator): for _ in tf.range(steps_per_loop): optional_data = distributed_iterator.get_next_as_optional() if not optional_data.has_value(): break per_replica_results = strategy.run(step_fn, args=(optional_data.get_value(),)) tf.print(strategy.experimental_local_results(per_replica_results)) train_fn(distributed_iterator) # ([0 1], [2 3]) # ([4], [])
Returns | |
---|---|
An tf.experimental.Optional object representing the next value from the tf.distribute.DistributedIterator (if it has one) or no value. |
__iter__
__iter__()
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/distribute/DistributedIterator