Computes the eigenvalues of one or more matrices.
tf.linalg.eigvals( tensor, name=None )
Note: If your program backpropagates through this function, you should replace it with a call to tf.linalg.eig (possibly ignoring the second output) to avoid computing the eigen decomposition twice. This is because the eigenvectors are used to compute the gradient w.r.t. the eigenvalues. See _SelfAdjointEigV2Grad in linalg_grad.py.
Args | |
---|---|
tensor | Tensor of shape [..., N, N] . |
name | string, optional name of the operation. |
Returns | |
---|---|
e | Eigenvalues. Shape is [..., N] . The vector e[..., :] contains the N eigenvalues of tensor[..., :, :] . |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/linalg/eigvals