W3cubDocs

/TensorFlow 2.4

tf.mlir.experimental.convert_function

Import a ConcreteFunction and convert it to a textual MLIR module.

This API is only intended for inspecting the internals of TensorFlow and the string returned is at the moment intended for debugging purposes.

A tf.function can be imported and converted from TensorFlow to TensorFlow MLIR with this API by extracting its ConcreteFunction (eagerly-executing wrapper around a tf.Graph).

For example:

@tf.function
def add(a, b):
  return a + b
concrete_function = add.get_concrete_function(
    tf.TensorSpec(None, tf.dtypes.float32),
    tf.TensorSpec(None, tf.dtypes.float32))
tf.mlir.experimental.convert_function(concrete_function)
'...module attributes {...} {...}'
Args
concrete_function An object of type ConcreteFunction.
pass_pipeline A textual description of an MLIR Pass Pipeline to run on the module, see MLIR documentation for the textual pass pipeline syntax.
Returns
A textual representation of the MLIR module corresponding to the ConcreteFunction.
Raises
InvalidArgumentError if concrete_function is invalid or cannot be converted to MLIR.

© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/mlir/experimental/convert_function