View source on GitHub |
Performs the max pooling on the input.
tf.nn.max_pool1d( input, ksize, strides, padding, data_format='NWC', name=None )
Note internally this op reshapes and uses the underlying 2d operation.
Args | ||
---|---|---|
input | A 3-D Tensor of the format specified by data_format . | |
ksize | An int or list of ints that has length 1 or 3 . The size of the window for each dimension of the input tensor. | |
strides | An int or list of ints that has length 1 or 3 . The stride of the sliding window for each dimension of the input tensor. | |
padding | Either the string "SAME"or "VALID"indicating the type of padding algorithm to use, or a list indicating the explicit paddings at the start and end of each dimension. When explicit padding is used and data_format is "NWC", this should be in the form [[0, 0], [pad_left, pad_right], [0, 0]]. When explicit padding used and data_format is "NCW", this should be in the form [[0, 0], [0, 0], [pad_left, pad_right]]. When using explicit padding, the size of the paddings cannot be greater than the sliding window size. </td> </tr><tr> <td> data_format</td> <td> An optional string from: "NWC", "NCW". Defaults to "NWC". </td> </tr><tr> <td> name` | A name for the operation (optional). |
Returns | |
---|---|
A Tensor of format specified by data_format . The max pooled output tensor. |
© 2020 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/nn/max_pool1d