| View source on GitHub | 
Represents options for dataset optimizations.
tf.data.experimental.OptimizationOptions()
You can set the optimization options of a dataset through the experimental_optimization property of tf.data.Options; the property is an instance of tf.data.experimental.OptimizationOptions.
options = tf.data.Options() options.experimental_optimization.noop_elimination = True options.experimental_optimization.apply_default_optimizations = False dataset = dataset.with_options(options)
| Attributes | |
|---|---|
| apply_default_optimizations | Whether to apply default graph optimizations. If False, only graph optimizations that have been explicitly enabled will be applied. | 
| filter_fusion | Whether to fuse filter transformations. If None, defaults to False. | 
| filter_parallelization | Whether to parallelize stateless filter transformations. If None, defaults to False. | 
| map_and_batch_fusion | Whether to fuse map and batch transformations. If None, defaults to True. | 
| map_and_filter_fusion | Whether to fuse map and filter transformations. If None, defaults to False. | 
| map_fusion | Whether to fuse map transformations. If None, defaults to False. | 
| map_parallelization | Whether to parallelize stateless map transformations. If None, defaults to True. | 
| noop_elimination | Whether to eliminate no-op transformations. If None, defaults to True. | 
| parallel_batch | Whether to parallelize copying of batch elements. If None, defaults to True. | 
| shuffle_and_repeat_fusion | Whether to fuse shuffle and repeat transformations. If None, defaults to True. | 
__eq__
__eq__(
    other
)
 Return self==value.
__ne__
__ne__(
    other
)
 Return self!=value.
    © 2022 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 4.0.
Code samples licensed under the Apache 2.0 License.
    https://www.tensorflow.org/versions/r2.9/api_docs/python/tf/data/experimental/OptimizationOptions