Initializer capable of adapting its scale to the shape of weights tensors.
Inherits From: Initializer
tf.keras.initializers.VarianceScaling(
    scale=1.0,
    mode='fan_in',
    distribution='truncated_normal',
    seed=None
)
  Also available via the shortcut function tf.keras.initializers.variance_scaling.
With distribution="truncated_normal" or "untruncated_normal", samples are drawn from a truncated/untruncated normal distribution with a mean of zero and a standard deviation (after truncation, if used) stddev = sqrt(scale / n), where n is:
mode="fan_in"
mode="fan_out"
mode="fan_avg"
With distribution="uniform", samples are drawn from a uniform distribution within [-limit, limit], where limit = sqrt(3 * scale / n).
# Standalone usage: initializer = tf.keras.initializers.VarianceScaling( scale=0.1, mode='fan_in', distribution='uniform') values = initializer(shape=(2, 2))
# Usage in a Keras layer: initializer = tf.keras.initializers.VarianceScaling( scale=0.1, mode='fan_in', distribution='uniform') layer = tf.keras.layers.Dense(3, kernel_initializer=initializer)
| Args | |
|---|---|
| scale | Scaling factor (positive float). | 
| mode | One of "fan_in", "fan_out", "fan_avg". | 
| distribution | Random distribution to use. One of "truncated_normal", "untruncated_normal" and "uniform". | 
| seed | A Python integer. Used to make the behavior of the initializer deterministic. Note that a seeded initializer will not produce the same random values across multiple calls, but multiple initializers will produce the same sequence when constructed with the same seed value. | 
from_config
@classmethod
from_config(
    config
)
 Instantiates an initializer from a configuration dictionary.
initializer = RandomUniform(-1, 1) config = initializer.get_config() initializer = RandomUniform.from_config(config)
| Args | |
|---|---|
| config | A Python dictionary, the output of get_config. | 
| Returns | |
|---|---|
| A tf.keras.initializers.Initializerinstance. | 
get_configget_config()
Returns the configuration of the initializer as a JSON-serializable dict.
| Returns | |
|---|---|
| A JSON-serializable Python dict. | 
__call__
__call__(
    shape, dtype=None, **kwargs
)
 Returns a tensor object initialized as specified by the initializer.
| Args | |
|---|---|
| shape | Shape of the tensor. | 
| dtype | Optional dtype of the tensor. Only floating point types are supported. If not specified, tf.keras.backend.floatx()is used, which default tofloat32unless you configured it otherwise (viatf.keras.backend.set_floatx(float_dtype)) | 
| **kwargs | Additional keyword arguments. | 
    © 2022 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 4.0.
Code samples licensed under the Apache 2.0 License.
    https://www.tensorflow.org/versions/r2.9/api_docs/python/tf/keras/initializers/VarianceScaling