tf.contrib.framework.init_from_checkpoint( checkpoint_dir, assignment_map )
Defined in tensorflow/contrib/framework/python/framework/checkpoint_utils.py
.
See the guide: Framework (contrib) > Checkpoint utilities
Using assignment map initializes current variables with loaded tensors.
Note: This overrides default initialization ops of specified variables and redefines dtype.
Assignment map supports following syntax:
'checkpoint_scope_name/': 'scope_name/'
- will load all variables in current scope_name
from checkpoint_scope_name
with matching variable names.'checkpoint_scope_name/some_other_variable': 'scope_name/variable_name'
- will initialize scope_name/variable_name
variable from checkpoint_scope_name/some_other_variable
.'scope_variable_name': variable
- will initialize given tf.Variable
object with variable from the checkpoint.'scope_variable_name': list(variable)
- will initialize list of partitioned variables with variable from the checkpoint.'/': 'scope_name/'
- will load all variables in current scope_name
from checkpoint's root (e.g. no scope).Supports loading into partitioned variables, which are represented as '<variable>/part_<part #>'
.
Example:
# Create variables. with tf.variable_scope('test'): m = tf.get_variable('my_var') with tf.variable_scope('test2'): var2 = tf.get_variable('my_var') var3 = tf.get_variable(name="my1", shape=[100, 100], partitioner=lambda shape, dtype: [5, 1]) ... # Specify which variables to initialize from checkpoint. init_from_checkpoint(checkpoint_dir, { 'some_var': 'test/my_var', 'some_scope/': 'test2/'}) ... # Or use `Variable` objects to identify what to initialize. init_from_checkpoint(checkpoint_dir, { 'some_scope/var2': var2, }) # Initialize partitioned variables init_from_checkpoint(checkpoint_dir, { 'some_var_from_ckpt': 'part_var', }) # Or specifying the list of `Variable` objects. init_from_checkpoint(checkpoint_dir, { 'some_var_from_ckpt': var3._get_variable_list(), }) ... # Initialize variables as usual. session.run(tf.get_all_variables())
checkpoint_dir
: Directory with checkpoints file or path to checkpoint.assignment_map
: Dict, where keys are names of the variables in the checkpoint and values are current variables or names of current variables (in default graph).tf.errors.OpError
: If missing checkpoints or tensors in checkpoints.ValueError
: If missing variables in current graph.
© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/contrib/framework/init_from_checkpoint