tf.contrib.gan.gan_loss(
model,
generator_loss_fn=tf.contrib.gan.losses.wasserstein_generator_loss,
discriminator_loss_fn=tf.contrib.gan.losses.wasserstein_discriminator_loss,
gradient_penalty_weight=None,
gradient_penalty_epsilon=1e-10,
gradient_penalty_target=1.0,
gradient_penalty_one_sided=False,
mutual_information_penalty_weight=None,
aux_cond_generator_weight=None,
aux_cond_discriminator_weight=None,
tensor_pool_fn=None,
add_summaries=True
)
Defined in tensorflow/contrib/gan/python/train.py.
Returns losses necessary to train generator and discriminator.
model: A GANModel tuple.generator_loss_fn: The loss function on the generator. Takes a GANModel tuple.discriminator_loss_fn: The loss function on the discriminator. Takes a GANModel tuple.gradient_penalty_weight: If not None, must be a non-negative Python number or Tensor indicating how much to weight the gradient penalty. See https://arxiv.org/pdf/1704.00028.pdf for more details.gradient_penalty_epsilon: If gradient_penalty_weight is not None, the small positive value used by the gradient penalty function for numerical stability. Note some applications will need to increase this value to avoid NaNs.gradient_penalty_target: If gradient_penalty_weight is not None, a Python number or Tensor indicating the target value of gradient norm. See the CIFAR10 section of https://arxiv.org/abs/1710.10196. Defaults to 1.0.gradient_penalty_one_sided: If True, penalty proposed in https://arxiv.org/abs/1709.08894 is used. Defaults to False.mutual_information_penalty_weight: If not None, must be a non-negative Python number or Tensor indicating how much to weight the mutual information penalty. See https://arxiv.org/abs/1606.03657 for more details.aux_cond_generator_weight: If not None: add a classification loss as in https://arxiv.org/abs/1610.09585aux_cond_discriminator_weight: If not None: add a classification loss as in https://arxiv.org/abs/1610.09585tensor_pool_fn: A function that takes (generated_data, generator_inputs), stores them in an internal pool and returns previous stored (generated_data, generator_inputs). For example tf.gan.features.tensor_pool. Defaults to None (not using tensor pool).add_summaries: Whether or not to add summaries for the losses.A GANLoss 2-tuple of (generator_loss, discriminator_loss). Includes regularization losses.
ValueError: If any of the auxiliary loss weights is provided and negative.ValueError: If mutual_information_penalty_weight is provided, but the model isn't an InfoGANModel.
© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/contrib/gan/gan_loss