tf.contrib.signal.stft( signals, frame_length, frame_step, fft_length=None, window_fn=functools.partial(window_ops.hann_window, periodic=True), pad_end=False, name=None )
Defined in tensorflow/contrib/signal/python/ops/spectral_ops.py
.
See the guide: Signal Processing (contrib) > Computing spectrograms
Computes the Short-time Fourier Transform of signals
.
Implemented with GPU-compatible ops and supports gradients.
signals
: A [..., samples]
float32
Tensor
of real-valued signals.frame_length
: An integer scalar Tensor
. The window length in samples.frame_step
: An integer scalar Tensor
. The number of samples to step.fft_length
: An integer scalar Tensor
. The size of the FFT to apply. If not provided, uses the smallest power of 2 enclosing frame_length
.window_fn
: A callable that takes a window length and a dtype
keyword argument and returns a [window_length]
Tensor
of samples in the provided datatype. If set to None
, no windowing is used.pad_end
: Whether to pad the end of signals
with zeros when the provided frame length and step produces a frame that lies partially past its end.name
: An optional name for the operation.A [..., frames, fft_unique_bins]
Tensor
of complex64
STFT values where fft_unique_bins
is fft_length // 2 + 1
(the unique components of the FFT).
ValueError
: If signals
is not at least rank 1, frame_length
is not scalar, or frame_step
is not scalar.
© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/contrib/signal/stft