TPUEstimator
Inherits From: Estimator
Defined in tensorflow/contrib/tpu/python/tpu/tpu_estimator.py
.
Estimator with TPU support.
TPUEstimator handles many of the details of running on TPU devices, such as replicating inputs and models for each core, and returning to host periodically to run hooks.
TPUEstimator transforms a global batch size in params to a per-shard batch size when calling the input_fn
and model_fn
. Users should specify global batch size in constructor, and then get the batch size for each shard in input_fn
and model_fn
by params['batch_size']
.
For training, model_fn
gets per-core batch size; input_fn
may get per-core or per-host batch size depending on per_host_input_for_training
in TPUConfig
(See docstring for TPUConfig for details).
For evaluation and prediction, model_fn
gets per-core batch size and input_fn
get per-host batch size.
model_fn
should return TPUEstimatorSpec
, which expects the eval_metrics
for TPU evaluation.
TPUEstimatorSpec.eval_metrics
is a tuple of metric_fn
and tensors
, where tensors
could be a list of Tensor
s or dict of names to Tensor
s. (See TPUEstimatorSpec
for details). metric_fn
takes the tensors
and returns a dict from metric string name to the result of calling a metric function, namely a (metric_tensor, update_op)
tuple.
One can set use_tpu
to False
for testing. All training, evaluation, and predict will be executed on CPU. input_fn
and model_fn
will receive train_batch_size
or eval_batch_size
unmodified as params['batch_size']
.
TPU evaluation only works on a single host (one TPU worker).
input_fn
for evaluation should NOT raise an end-of-input exception (OutOfRangeError
or StopIteration
). And all evaluation steps and all batches should have the same size.
# The metric Fn which runs on CPU. def metric_fn(labels, logits): predictions = tf.argmax(logits, 1) return { 'accuracy': tf.metrics.precision( labels=labels, predictions=predictions), } # Your model Fn which runs on TPU (eval_metrics is list in this example) def model_fn(features, labels, mode, config, params): ... logits = ... if mode = tf.estimator.ModeKeys.EVAL: return tpu_estimator.TPUEstimatorSpec( mode=mode, loss=loss, eval_metrics=(metric_fn, [labels, logits])) # or specify the eval_metrics tensors as dict. def model_fn(features, labels, mode, config, params): ... final_layer_output = ... if mode = tf.estimator.ModeKeys.EVAL: return tpu_estimator.TPUEstimatorSpec( mode=mode, loss=loss, eval_metrics=(metric_fn, { 'labels': labels, 'logits': final_layer_output, }))
Prediction on TPU is an experimental feature to support large batch inference. It is not designed for latency-critical system. In addition, due to some usability issues, for prediction with small dataset, CPU .predict
, i.e., creating a new TPUEstimator
instance with use_tpu=False
, might be more convenient.
Note: In contrast to TPU training/evaluation, theinput_fn
for prediction should raise an end-of-input exception (OutOfRangeError
orStopIteration
), which serves as the stopping signal toTPUEstimator
. To be precise, the ops created byinput_fn
produce one batch of the data. Thepredict()
API processes one batch at a time. When reaching the end of the data source, an end-of-input exception should be raised by one of these operations. The user usually does not need to do this manually. As long as the dataset is not repeated forever, thetf.data
API will raise an end-of-input exception automatically after the last batch has been produced.
Note: Estimator.predict returns a Python generator. Please consume all the data from the generator so that TPUEstimator can shutdown the TPU system properly for user.
TPU prediction only works on a single host (one TPU worker).
input_fn
must return a Dataset
instance rather than features
. In fact, .train() and .evaluate() also support Dataset as return value.
height = 32 width = 32 total_examples = 100 def predict_input_fn(params): batch_size = params['batch_size'] images = tf.random_uniform( [total_examples, height, width, 3], minval=-1, maxval=1) dataset = tf.data.Dataset.from_tensor_slices(images) dataset = dataset.map(lambda images: {'image': images}) dataset = dataset.batch(batch_size) return dataset def model_fn(features, labels, params, mode): # Generate predictions, called 'output', from features['image'] if mode == tf.estimator.ModeKeys.PREDICT: return tf.contrib.tpu.TPUEstimatorSpec( mode=mode, predictions={ 'predictions': output, 'is_padding': features['is_padding'] }) tpu_est = TPUEstimator( model_fn=model_fn, ..., predict_batch_size=16) # Fully consume the generator so that TPUEstimator can shutdown the TPU # system. for item in tpu_est.predict(input_fn=input_fn): # Filter out item if the `is_padding` is 1. # Process the 'predictions'
Exporting SavedModel
support on TPU is not yet implemented. So, export_savedmodel
is executed on CPU, even if use_tpu
is true.
config
model_dir
model_fn
Returns the model_fn which is bound to self.params.
The model_fn with following signature: def model_fn(features, labels, mode, config)
params
__init__
__init__( model_fn=None, model_dir=None, config=None, params=None, use_tpu=True, train_batch_size=None, eval_batch_size=None, predict_batch_size=None, batch_axis=None )
Constructs an TPUEstimator
instance.
model_fn
: Model function as required by Estimator
. For training, the returned EstimatorSpec
cannot have hooks as it is not supported in TPUEstimator
.model_dir
: Directory to save model parameters, graph and etc. This can also be used to load checkpoints from the directory into a estimator to continue training a previously saved model. If None
, the model_dir in config
will be used if set. If both are set, they must be same. If both are None
, a temporary directory will be used.config
: An tpu_config.RunConfig
configuration object. Cannot be None
.params
: An optional dict
of hyper parameters that will be passed into input_fn
and model_fn
. Keys are names of parameters, values are basic python types. There are reserved keys for TPUEstimator
, including 'batch_size'.use_tpu
: A bool indicating whether TPU support is enabled. Currently,train_batch_size
: An int representing the global training batch size. TPUEstimator transforms this global batch size to a per-shard batch size, as params['batch_size'], when calling input_fn
and model_fn
. Cannot be None
if use_tpu
is True
. Must be divisible by total number of replicas.eval_batch_size
: An int representing evaluation batch size. Must be divisible by total number of replicas.predict_batch_size
: An int representing the prediction batch size. Must be divisible by total number of replicas.batch_axis
: A python tuple of int values describing how each tensor produced by the Estimator input_fn
should be split across the TPU compute shards. For example, if your input_fn produced (images, labels) where the images tensor is in HWCN
format, your shard dimensions would be [3, 0], where 3 corresponds to the N
dimension of your images Tensor, and 0 corresponds to the dimension along which to split the labels to match up with the corresponding images. If None is supplied, and per_host_input_for_training is True, batches will be sharded based on the major dimension. If tpu_config.per_host_input_for_training is False or PER_HOST_V2
, batch_axis is ignored.ValueError
: params
has reserved keys already.evaluate
evaluate( input_fn, steps=None, hooks=None, checkpoint_path=None, name=None )
Evaluates the model given evaluation data input_fn.
For each step, calls input_fn
, which returns one batch of data. Evaluates until: - steps
batches are processed, or - input_fn
raises an end-of-input exception (OutOfRangeError
or StopIteration
).
input_fn
: A function that constructs the input data for evaluation. See Premade Estimators for more information. The function should construct and return one of the following:
Dataset
object must be a tuple (features, labels) with same constraints as below.features
is a Tensor
or a dictionary of string feature name to Tensor
and labels
is a Tensor
or a dictionary of string label name to Tensor
. Both features
and labels
are consumed by model_fn
. They should satisfy the expectation of model_fn
from inputs.steps
: Number of steps for which to evaluate model. If None
, evaluates until input_fn
raises an end-of-input exception.
hooks
: List of SessionRunHook
subclass instances. Used for callbacks inside the evaluation call.checkpoint_path
: Path of a specific checkpoint to evaluate. If None
, the latest checkpoint in model_dir
is used.name
: Name of the evaluation if user needs to run multiple evaluations on different data sets, such as on training data vs test data. Metrics for different evaluations are saved in separate folders, and appear separately in tensorboard.A dict containing the evaluation metrics specified in model_fn
keyed by name, as well as an entry global_step
which contains the value of the global step for which this evaluation was performed.
ValueError
: If steps <= 0
.ValueError
: If no model has been trained, namely model_dir
, or the given checkpoint_path
is empty.export_savedmodel
export_savedmodel( export_dir_base, serving_input_receiver_fn, assets_extra=None, as_text=False, checkpoint_path=None, strip_default_attrs=False )
Exports inference graph as a SavedModel into given dir.
For a detailed guide, see Using SavedModel with Estimators.
This method builds a new graph by first calling the serving_input_receiver_fn to obtain feature Tensor
s, and then calling this Estimator
's model_fn to generate the model graph based on those features. It restores the given checkpoint (or, lacking that, the most recent checkpoint) into this graph in a fresh session. Finally it creates a timestamped export directory below the given export_dir_base, and writes a SavedModel
into it containing a single MetaGraphDef
saved from this session.
The exported MetaGraphDef
will provide one SignatureDef
for each element of the export_outputs dict returned from the model_fn, named using the same keys. One of these keys is always signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY, indicating which signature will be served when a serving request does not specify one. For each signature, the outputs are provided by the corresponding ExportOutput
s, and the inputs are always the input receivers provided by the serving_input_receiver_fn.
Extra assets may be written into the SavedModel via the assets_extra argument. This should be a dict, where each key gives a destination path (including the filename) relative to the assets.extra directory. The corresponding value gives the full path of the source file to be copied. For example, the simple case of copying a single file without renaming it is specified as {'my_asset_file.txt': '/path/to/my_asset_file.txt'}
.
export_dir_base
: A string containing a directory in which to create timestamped subdirectories containing exported SavedModels.serving_input_receiver_fn
: A function that takes no argument and returns a ServingInputReceiver
or TensorServingInputReceiver
.assets_extra
: A dict specifying how to populate the assets.extra directory within the exported SavedModel, or None
if no extra assets are needed.as_text
: whether to write the SavedModel proto in text format.checkpoint_path
: The checkpoint path to export. If None
(the default), the most recent checkpoint found within the model directory is chosen.strip_default_attrs
: Boolean. If True
, default-valued attributes will be removed from the NodeDefs. For a detailed guide, see Stripping Default-Valued Attributes.The string path to the exported directory.
ValueError
: if no serving_input_receiver_fn is provided, no export_outputs are provided, or no checkpoint can be found.get_variable_names
get_variable_names()
Returns list of all variable names in this model.
List of names.
ValueError
: If the Estimator has not produced a checkpoint yet.get_variable_value
get_variable_value(name)
Returns value of the variable given by name.
name
: string or a list of string, name of the tensor.Numpy array - value of the tensor.
ValueError
: If the Estimator has not produced a checkpoint yet.latest_checkpoint
latest_checkpoint()
Finds the filename of latest saved checkpoint file in model_dir
.
The full path to the latest checkpoint or None
if no checkpoint was found.
predict
predict( input_fn, predict_keys=None, hooks=None, checkpoint_path=None, yield_single_examples=True )
Yields predictions for given features.
input_fn
: A function that constructs the features. Prediction continues until input_fn
raises an end-of-input exception (OutOfRangeError
or StopIteration
). See Premade Estimators for more information. The function should construct and return one of the following:
Dataset
object must have same constraints as below.Tensor
or a dictionary of string feature name to Tensor
. features are consumed by model_fn
. They should satisfy the expectation of model_fn
from inputs.predict_keys
: list of str
, name of the keys to predict. It is used if the EstimatorSpec.predictions
is a dict
. If predict_keys
is used then rest of the predictions will be filtered from the dictionary. If None
, returns all.
hooks
: List of SessionRunHook
subclass instances. Used for callbacks inside the prediction call.checkpoint_path
: Path of a specific checkpoint to predict. If None
, the latest checkpoint in model_dir
is used.yield_single_examples
: If False, yield the whole batch as returned by the model_fn
instead of decomposing the batch into individual elements. This is useful if model_fn
returns some tensors whose first dimension is not equal to the batch size.Evaluated values of predictions
tensors.
ValueError
: Could not find a trained model in model_dir
.ValueError
: If batch length of predictions is not the same and yield_single_examples
is True.ValueError
: If there is a conflict between predict_keys
and predictions
. For example if predict_keys
is not None
but EstimatorSpec.predictions
is not a dict
.train
train( input_fn, hooks=None, steps=None, max_steps=None, saving_listeners=None )
Trains a model given training data input_fn.
input_fn
: A function that provides input data for training as minibatches. See Premade Estimators for more information. The function should construct and return one of the following:
Dataset
object must be a tuple (features, labels) with same constraints as below.features
is a Tensor
or a dictionary of string feature name to Tensor
and labels
is a Tensor
or a dictionary of string label name to Tensor
. Both features
and labels
are consumed by model_fn
. They should satisfy the expectation of model_fn
from inputs.hooks
: List of SessionRunHook
subclass instances. Used for callbacks inside the training loop.
steps
: Number of steps for which to train model. If None
, train forever or train until input_fn generates the OutOfRange
error or StopIteration
exception. 'steps' works incrementally. If you call two times train(steps=10) then training occurs in total 20 steps. If OutOfRange
or StopIteration
occurs in the middle, training stops before 20 steps. If you don't want to have incremental behavior please set max_steps
instead. If set, max_steps
must be None
.max_steps
: Number of total steps for which to train model. If None
, train forever or train until input_fn generates the OutOfRange
error or StopIteration
exception. If set, steps
must be None
. If OutOfRange
or StopIteration
occurs in the middle, training stops before max_steps
steps. Two calls to train(steps=100)
means 200 training iterations. On the other hand, two calls to train(max_steps=100)
means that the second call will not do any iteration since first call did all 100 steps.saving_listeners
: list of CheckpointSaverListener
objects. Used for callbacks that run immediately before or after checkpoint savings.self
, for chaining.
ValueError
: If both steps
and max_steps
are not None
.ValueError
: If either steps
or max_steps
is <= 0.
© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/python/tf/contrib/tpu/TPUEstimator