/TensorFlow Python



Defined in tensorflow/python/ops/image_ops_impl.py.

Computes SSIM index between img1 and img2.

This function is based on the standard SSIM implementation from: Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: from error visibility to structural similarity. IEEE transactions on image processing.

Note: The true SSIM is only defined on grayscale. This function does not perform any colorspace transform. (If input is already YUV, then it will compute YUV SSIM average.)

Details: - 11x11 Gaussian filter of width 1.5 is used. - k1 = 0.01, k2 = 0.03 as in the original paper.

The image sizes must be at least 11x11 because of the filter size.


# Read images from file.
im1 = tf.decode_png('path/to/im1.png')
im2 = tf.decode_png('path/to/im2.png')
# Compute SSIM over tf.uint8 Tensors.
ssim1 = tf.image.ssim(im1, im2, max_val=255)

# Compute SSIM over tf.float32 Tensors.
im1 = tf.image.convert_image_dtype(im1, tf.float32)
im2 = tf.image.convert_image_dtype(im2, tf.float32)
ssim2 = tf.image.ssim(im1, im2, max_val=1.0)
# ssim1 and ssim2 both have type tf.float32 and are almost equal.


  • img1: First image batch.
  • img2: Second image batch.
  • max_val: The dynamic range of the images (i.e., the difference between the maximum the and minimum allowed values).


A tensor containing an SSIM value for each image in batch. Returned SSIM values are in range (-1, 1], when pixel values are non-negative. Returns a tensor with shape: broadcast(img1.shape[:-3], img2.shape[:-3]).

© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.