Zig is a general-purpose programming language and toolchain for maintaining robust, optimal, and reusable software.
Often the most efficient way to learn something new is to see examples, so this documentation shows how to use each of Zig's features. It is all on one page so you can search with your browser's search tool.
The code samples in this document are compiled and tested as part of the main test suite of Zig.
This HTML document depends on no external files, so you can use it offline.
The Zig Standard Library has its own documentation.
Zig's Standard Library contains commonly used algorithms, data structures, and definitions to help you build programs or libraries. You will see many examples of Zig's Standard Library used in this documentation. To learn more about the Zig Standard Library, visit the link above.
const std = @import("std"); pub fn main() !void { const stdout = std.io.getStdOut().writer(); try stdout.print("Hello, {s}!\n", .{"world"}); }
$ zig build-exe hello.zig $ ./hello Hello, world!
The Zig code sample above demonstrates one way to create a program that will output: Hello, world!.
The code sample shows the contents of a file named hello.zig
. Files storing Zig source code are UTF-8 encoded text files. The files storing Zig source code are usually named with the .zig
extension.
Following the hello.zig
Zig code sample, the Zig Build System is used to build an executable program from the hello.zig
source code. Then, the hello
program is executed showing its output Hello, world!. The lines beginning with $ represent command line prompts and a command. Everything else is program output.
The code sample begins by adding the Zig Standard Library to the build using the @import builtin function. The @import("std")
function call creates a structure that represents the Zig Standard Library. The code then declares a constant identifier, named std
, that gives access the features of the Zig Standard Library.
Next, a public function, pub fn
, named main
is declared. The main
function is necessary because it tells the Zig compiler where the start of the program exists. Programs designed to be executed will need a pub fn main
function.
A function is a block of any number of statements and expressions that, as a whole, perform a task. Functions may or may not return data after they are done performing their task. If a function cannot perform its task, it might return an error. Zig makes all of this explicit.
In the hello.zig
code sample, the main
function is declared with the !void
return type. This return type is known as an Error Union Type. This syntax tells the Zig compiler that the function will either return an error or a value. An error union type combines an Error Set Type and any other data type (e.g. a Primitive Type or a user-defined type such as a struct, enum, or union). The full form of an error union type is <error set type>
!
<any data type>
. In the code sample, the error set type is not explicitly written on the left side of the !
operator. When written this way, the error set type is an inferred error set type. The void
after the !
operator tells the compiler that the function will not return a value under normal circumstances (i.e. when no errors occur).
In Zig, a function's block of statements and expressions are surrounded by an open curly-brace {
and close curly-brace }
. Inside of the main
function are expressions that perform the task of outputting Hello, world! to standard output.
First, a constant identifier, stdout
, is initialized to represent standard output's writer. Then, the program tries to print the Hello, world! message to standard output.
Functions sometimes need information to perform their task. In Zig, information is passed to functions between an open parenthesis (
and a close parenthesis )
placed after the function's name. This information is also known as arguments. When there are multiple arguments passed to a function, they are separated by commas ,
.
The two arguments passed to the stdout.print()
function, "Hello, {s}!\n"
and .{"world"}
, are evaluated at compile-time. The code sample is purposely written to show how to perform string substitution in the print
function. The curly-braces inside of the first argument are substituted with the compile-time known value inside of the second argument (known as an anonymous struct literal). The \n
inside of the double-quotes of the first argument is the escape sequence for the newline character. The try expression evaluates the result of stdout.print
. If the result is an error, then the try
expression will return from main
with the error. Otherwise, the program will continue. In this case, there are no more statements or expressions left to execute in the main
function, so the program exits.
In Zig, the standard output writer's print
function is allowed to fail because it is actually a function defined as part of a generic Writer. Consider a generic Writer that represents writing data to a file. When the disk is full, a write to the file will fail. However, we typically do not expect writing text to the standard output to fail. To avoid having to handle the failure case of printing to standard output, you can use alternate functions: the functions in std.log
for proper logging or the std.debug.print
function. This documentation will use the latter option to print to standard error (stderr) and silently return on failure. The next code sample, hello_again.zig
demonstrates the use of std.debug.print
.
const print = @import("std").debug.print; pub fn main() void { print("Hello, world!\n", .{}); }
$ zig build-exe hello_again.zig $ ./hello_again Hello, world!
Note that you can leave off the !
from the return type because std.debug.print
cannot fail.
See also:
const print = @import("std").debug.print; pub fn main() void { // Comments in Zig start with "//" and end at the next LF byte (end of line). // The line below is a comment and won't be executed. //print("Hello?", .{}); print("Hello, world!\n", .{}); // another comment }
$ zig build-exe comments.zig $ ./comments Hello, world!
There are no multiline comments in Zig (e.g. like /* */
comments in C). This helps allow Zig to have the property that each line of code can be tokenized out of context.
A doc comment is one that begins with exactly three slashes (i.e. ///
but not ////
); multiple doc comments in a row are merged together to form a multiline doc comment. The doc comment documents whatever immediately follows it.
/// A structure for storing a timestamp, with nanosecond precision (this is a /// multiline doc comment). const Timestamp = struct { /// The number of seconds since the epoch (this is also a doc comment). seconds: i64, // signed so we can represent pre-1970 (not a doc comment) /// The number of nanoseconds past the second (doc comment again). nanos: u32, /// Returns a `Timestamp` struct representing the Unix epoch; that is, the /// moment of 1970 Jan 1 00:00:00 UTC (this is a doc comment too). pub fn unixEpoch() Timestamp { return Timestamp{ .seconds = 0, .nanos = 0, }; } };
Doc comments are only allowed in certain places; eventually, it will become a compile error to have a doc comment in an unexpected place, such as in the middle of an expression, or just before a non-doc comment.
User documentation that doesn't belong to whatever immediately follows it, like package-level documentation, goes in top-level doc comments. A top-level doc comment is one that begins with two slashes and an exclamation point: //!
.
//! This module provides functions for retrieving the current date and //! time with varying degrees of precision and accuracy. It does not //! depend on libc, but will use functions from it if available.
// Top-level declarations are order-independent: const print = std.debug.print; const std = @import("std"); const os = std.os; const assert = std.debug.assert; pub fn main() void { // integers const one_plus_one: i32 = 1 + 1; print("1 + 1 = {}\n", .{one_plus_one}); // floats const seven_div_three: f32 = 7.0 / 3.0; print("7.0 / 3.0 = {}\n", .{seven_div_three}); // boolean print("{}\n{}\n{}\n", .{ true and false, true or false, !true, }); // optional var optional_value: ?[]const u8 = null; assert(optional_value == null); print("\noptional 1\ntype: {s}\nvalue: {s}\n", .{ @typeName(@TypeOf(optional_value)), optional_value, }); optional_value = "hi"; assert(optional_value != null); print("\noptional 2\ntype: {s}\nvalue: {s}\n", .{ @typeName(@TypeOf(optional_value)), optional_value, }); // error union var number_or_error: anyerror!i32 = error.ArgNotFound; print("\nerror union 1\ntype: {s}\nvalue: {}\n", .{ @typeName(@TypeOf(number_or_error)), number_or_error, }); number_or_error = 1234; print("\nerror union 2\ntype: {s}\nvalue: {}\n", .{ @typeName(@TypeOf(number_or_error)), number_or_error, }); }
$ zig build-exe values.zig $ ./values 1 + 1 = 2 7.0 / 3.0 = 2.33333325e+00 false true false optional 1 type: ?[]const u8 value: null optional 2 type: ?[]const u8 value: hi error union 1 type: anyerror!i32 value: error.ArgNotFound error union 2 type: anyerror!i32 value: 1234
Type | C Equivalent | Description |
---|---|---|
i8 | int8_t | signed 8-bit integer |
u8 | uint8_t | unsigned 8-bit integer |
i16 | int16_t | signed 16-bit integer |
u16 | uint16_t | unsigned 16-bit integer |
i32 | int32_t | signed 32-bit integer |
u32 | uint32_t | unsigned 32-bit integer |
i64 | int64_t | signed 64-bit integer |
u64 | uint64_t | unsigned 64-bit integer |
i128 | __int128 | signed 128-bit integer |
u128 | unsigned __int128 | unsigned 128-bit integer |
isize | intptr_t | signed pointer sized integer |
usize | uintptr_t | unsigned pointer sized integer |
c_short | short | for ABI compatibility with C |
c_ushort | unsigned short | for ABI compatibility with C |
c_int | int | for ABI compatibility with C |
c_uint | unsigned int | for ABI compatibility with C |
c_long | long | for ABI compatibility with C |
c_ulong | unsigned long | for ABI compatibility with C |
c_longlong | long long | for ABI compatibility with C |
c_ulonglong | unsigned long long | for ABI compatibility with C |
c_longdouble | long double | for ABI compatibility with C |
f16 | _Float16 | 16-bit floating point (10-bit mantissa) IEEE-754-2008 binary16 |
f32 | float | 32-bit floating point (23-bit mantissa) IEEE-754-2008 binary32 |
f64 | double | 64-bit floating point (52-bit mantissa) IEEE-754-2008 binary64 |
f128 | _Float128 | 128-bit floating point (112-bit mantissa) IEEE-754-2008 binary128 |
bool | bool |
true or false
|
anyopaque | void | Used for type-erased pointers. |
void | (none) | 0 bit type |
noreturn | (none) | the type of break , continue , return , unreachable , and while (true) {}
|
type | (none) | the type of types |
anyerror | (none) | an error code |
comptime_int | (none) | Only allowed for comptime-known values. The type of integer literals. |
comptime_float | (none) | Only allowed for comptime-known values. The type of float literals. |
In addition to the integer types above, arbitrary bit-width integers can be referenced by using an identifier of i
or u
followed by digits. For example, the identifier i7
refers to a signed 7-bit integer. The maximum allowed bit-width of an integer type is 65535
.
See also:
Name | Description |
---|---|
true and false
|
bool values |
null | used to set an optional type to null
|
undefined | used to leave a value unspecified |
See also:
String literals are constant single-item Pointers to null-terminated byte arrays. The type of string literals encodes both the length, and the fact that they are null-terminated, and thus they can be coerced to both Slices and Null-Terminated Pointers. Dereferencing string literals converts them to Arrays.
The encoding of a string in Zig is de-facto assumed to be UTF-8. Because Zig source code is UTF-8 encoded, any non-ASCII bytes appearing within a string literal in source code carry their UTF-8 meaning into the content of the string in the Zig program; the bytes are not modified by the compiler. However, it is possible to embed non-UTF-8 bytes into a string literal using \xNN
notation.
Unicode code point literals have type comptime_int
, the same as Integer Literals. All Escape Sequences are valid in both string literals and Unicode code point literals.
In many other programming languages, a Unicode code point literal is called a "character literal". However, there is no precise technical definition of a "character" in recent versions of the Unicode specification (as of Unicode 13.0). In Zig, a Unicode code point literal corresponds to the Unicode definition of a code point.
const print = @import("std").debug.print; const mem = @import("std").mem; // will be used to compare bytes pub fn main() void { const bytes = "hello"; print("{s}\n", .{@typeName(@TypeOf(bytes))}); // *const [5:0]u8 print("{d}\n", .{bytes.len}); // 5 print("{c}\n", .{bytes[1]}); // 'e' print("{d}\n", .{bytes[5]}); // 0 print("{}\n", .{'e' == '\x65'}); // true print("{d}\n", .{'\u{1f4a9}'}); // 128169 print("{d}\n", .{'💯'}); // 128175 print("{}\n", .{mem.eql(u8, "hello", "h\x65llo")}); // true print("0x{x}\n", .{"\xff"[0]}); // non-UTF-8 strings are possible with \xNN notation. print("{u}\n", .{'⚡'}); }
$ zig build-exe string_literals.zig $ ./string_literals *const [5:0]u8 5 e 0 true 128169 128175 true 0xff ⚡
See also:
Escape Sequence | Name |
---|---|
\n | Newline |
\r | Carriage Return |
\t | Tab |
\\ | Backslash |
\' | Single Quote |
\" | Double Quote |
\xNN | hexadecimal 8-bit byte value (2 digits) |
\u{NNNNNN} | hexadecimal Unicode code point UTF-8 encoded (1 or more digits) |
Note that the maximum valid Unicode point is 0x10ffff
.
Multiline string literals have no escapes and can span across multiple lines. To start a multiline string literal, use the \\
token. Just like a comment, the string literal goes until the end of the line. The end of the line is not included in the string literal. However, if the next line begins with \\
then a newline is appended and the string literal continues.
const hello_world_in_c = \\#include <stdio.h> \\ \\int main(int argc, char **argv) { \\ printf("hello world\n"); \\ return 0; \\} ;
See also:
Use the const
keyword to assign a value to an identifier:
const x = 1234; fn foo() void { // It works at file scope as well as inside functions. const y = 5678; // Once assigned, an identifier cannot be changed. y += 1; } pub fn main() void { foo(); }
$ zig build-exe constant_identifier_cannot_change.zig ./docgen_tmp/constant_identifier_cannot_change.zig:8:7: error: cannot assign to constant y += 1; ^
const
applies to all of the bytes that the identifier immediately addresses. Pointers have their own const-ness.
If you need a variable that you can modify, use the var
keyword:
const print = @import("std").debug.print; pub fn main() void { var y: i32 = 5678; y += 1; print("{d}", .{y}); }
$ zig build-exe mutable_var.zig $ ./mutable_var 5679
Variables must be initialized:
pub fn main() void { var x: i32; x = 1; }
$ zig build-exe var_must_be_initialized.zig docgen_tmp/var_must_be_initialized.zig:2:5: error: variables must be initialized var x: i32; ^
Use undefined
to leave variables uninitialized:
const print = @import("std").debug.print; pub fn main() void { var x: i32 = undefined; x = 1; print("{d}", .{x}); }
$ zig build-exe assign_undefined.zig $ ./assign_undefined 1
undefined
can be coerced to any type. Once this happens, it is no longer possible to detect that the value is undefined
. undefined
means the value could be anything, even something that is nonsense according to the type. Translated into English, undefined
means "Not a meaningful value. Using this value would be a bug. The value will be unused, or overwritten before being used."
In Debug mode, Zig writes 0xaa
bytes to undefined memory. This is to catch bugs early, and to help detect use of undefined memory in a debugger.
Code written within one or more test
declarations can be used to ensure behavior meets expectations:
const std = @import("std"); test "expect addOne adds one to 41" { // The Standard Library contains useful functions to help create tests. // `expect` is a function that verifies its argument is true. // It will return an error if its argument is false to indicate a failure. // `try` is used to return an error to the test runner to notify it that the test failed. try std.testing.expect(addOne(41) == 42); } /// The function `addOne` adds one to the number given as its argument. fn addOne(number: i32) i32 { return number + 1; }
$ zig test introducing_zig_test.zig 1/1 test "expect addOne adds one to 41"... OK All 1 tests passed.
The introducing_zig_test.zig
code sample tests the function addOne
to ensure that it returns 42
given the input 41
. From this test's perspective, the addOne
function is said to be code under test.
zig test is a tool that creates and runs a test build. By default, it builds and runs an executable program using the default test runner provided by the Zig Standard Library as its main entry point. During the build, test
declarations found while resolving the given Zig source file are included for the default test runner to run and report on.
The shell output shown above displays two lines after the zig test command. These lines are printed to standard error by the default test runner:
Test declarations contain the keyword test
, followed by an optional name written as a string literal, followed by a block containing any valid Zig code that is allowed in a function.
Test declarations are similar to Functions: they have a return type and a block of code. The implicit return type of test
is the Error Union Type anyerror!void
, and it cannot be changed. When a Zig source file is not built using the zig test tool, the test declarations are omitted from the build.
Test declarations can be written in the same file, where code under test is written, or in a separate Zig source file. Since test declarations are top-level declarations, they are order-independent and can be written before or after the code under test.
See also:
When the zig test tool is building a test runner, only resolved test
declarations are included in the build. Initially, only the given Zig source file's top-level declarations are resolved. Unless nested containers are referenced from a top-level test declaration, nested container tests will not be resolved.
The code sample below uses the std.testing.refAllDecls(@This())
function call to reference all of the containers that are in the file including the imported Zig source file. The code sample also shows an alternative way to reference containers using the _ = C;
syntax. This syntax tells the compiler to ignore the result of the expression on the right side of the assignment operator.
const std = @import("std"); const expect = std.testing.expect; // Imported source file tests will run when referenced from a top-level test declaration. // The next line alone does not cause "introducing_zig_test.zig" tests to run. const imported_file = @import("introducing_zig_test.zig"); test { // To run nested container tests, either, call `refAllDecls` which will // reference all declarations located in the given argument. // `@This()` is a builtin function that returns the innermost container it is called from. // In this example, the innermost container is this file (implicitly a struct). std.testing.refAllDecls(@This()); // or, reference each container individually from a top-level test declaration. // The `_ = C;` syntax is a no-op reference to the identifier `C`. _ = S; _ = U; _ = @import("introducing_zig_test.zig"); } const S = struct { test "S demo test" { try expect(true); } const SE = enum { V, // This test won't run because its container (SE) is not referenced. test "This Test Won't Run" { try expect(false); } }; }; const U = union { // U is referenced by the file's top-level test declaration s: US, // and US is referenced here; therefore, "U.Us demo test" will run const US = struct { test "U.US demo test" { // This test is a top-level test declaration for the struct. // The struct is nested (declared) inside of a union. try expect(true); } }; test "U demo test" { try expect(true); } };
$ zig test testdecl_container_top_level.zig 1/5 test ""... OK 2/5 S.test "S demo test"... OK 3/5 U.test "U demo test"... OK 4/5 introducing_zig_test.test "expect addOne adds one to 41"... OK 5/5 US.test "U.US demo test"... OK All 5 tests passed.
The default test runner checks for an error returned from a test. When a test returns an error, the test is considered a failure and its error return trace is output to standard error. The total number of failures will be reported after all tests have run.
const std = @import("std"); test "expect this to fail" { try std.testing.expect(false); } test "expect this to succeed" { try std.testing.expect(true); }
$ zig test test.zig 1/2 test "expect this to fail"... test "expect this to fail"... FAIL (TestUnexpectedResult) FAIL (TestUnexpectedResult) /home/andy/Downloads/zig/lib/std/testing.zig:303:14: 0x20801b in std.testing.expect (test) if (!ok) return error.TestUnexpectedResult; ^ /home/andy/Downloads/zig/docgen_tmp/test.zig:4:5: 0x207a51 in test "expect this to fail" (test) try std.testing.expect(false); ^ 2/2 test "expect this to succeed"... OK 1 passed; 0 skipped; 1 failed. error: the following test command failed with exit code 1: docgen_tmp/zig-cache/o/8e4964e05ddaf866e77360a551b3c05b/test /home/andy/Downloads/zig/build-release/zig
One way to skip tests is to filter them out by using the zig test command line parameter --test-filter [text]. This makes the test build only include tests whose name contains the supplied filter text. Note that non-named tests are run even when using the --test-filter [text] command line parameter.
To programmatically skip a test, make a test
return the error error.SkipZigTest
and the default test runner will consider the test as being skipped. The total number of skipped tests will be reported after all tests have run.
test "this will be skipped" { return error.SkipZigTest; }
$ zig test test.zig 1/1 test "this will be skipped"... test "this will be skipped"... SKIP SKIP 0 passed; 1 skipped; 0 failed.
The default test runner skips tests containing a suspend point while the test is running using the default, blocking IO mode. (The evented IO mode is enabled using the --test-evented-io command line parameter.)
const std = @import("std"); test "async skip test" { var frame = async func(); const result = await frame; try std.testing.expect(result == 1); } fn func() i32 { suspend { resume @frame(); } return 1; }
$ zig test async_skip.zig 1/1 test "async skip test"... test "async skip test"... SKIP (async test) SKIP (async test) 0 passed; 1 skipped; 0 failed.
In the code sample above, the test would not be skipped in blocking IO mode if the nosuspend
keyword was used (see Async and Await).
When code allocates Memory using the Zig Standard Library's testing allocator, std.testing.allocator
, the default test runner will report any leaks that are found from using the testing allocator:
const std = @import("std"); test "detect leak" { var list = std.ArrayList(u21).init(std.testing.allocator); // missing `defer list.deinit();` try list.append('☔'); try std.testing.expect(list.items.len == 1); }
$ zig test test.zig 1/1 test "detect leak"... OK [gpa] (err): memory address 0x7fc140eb0000 leaked: /home/andy/Downloads/zig/lib/std/array_list.zig:325:69: 0x20d9d9 in std.array_list.ArrayListAligned(u21,null).ensureTotalCapacityPrecise (test) const new_memory = try self.allocator.reallocAtLeast(self.allocatedSlice(), new_capacity); ^ /home/andy/Downloads/zig/lib/std/array_list.zig:310:55: 0x20d7de in std.array_list.ArrayListAligned(u21,null).ensureTotalCapacity (test) return self.ensureTotalCapacityPrecise(better_capacity); ^ /home/andy/Downloads/zig/lib/std/array_list.zig:349:41: 0x20d758 in std.array_list.ArrayListAligned(u21,null).addOne (test) try self.ensureTotalCapacity(newlen); ^ /home/andy/Downloads/zig/lib/std/array_list.zig:161:49: 0x209d54 in std.array_list.ArrayListAligned(u21,null).append (test) const new_item_ptr = try self.addOne(); ^ /home/andy/Downloads/zig/docgen_tmp/test.zig:6:20: 0x209730 in test "detect leak" (test) try list.append('☔'); ^ /home/andy/Downloads/zig/lib/std/special/test_runner.zig:80:28: 0x23bd83 in std.special.main (test) } else test_fn.func(); ^ /home/andy/Downloads/zig/lib/std/start.zig:543:22: 0x233cac in std.start.callMain (test) root.main(); ^ /home/andy/Downloads/zig/lib/std/start.zig:495:12: 0x20e7ce in std.start.callMainWithArgs (test) return @call(.{ .modifier = .always_inline }, callMain, .{}); ^ All 1 tests passed. 1 errors were logged. 1 tests leaked memory. error: the following test command failed with exit code 1: docgen_tmp/zig-cache/o/8e4964e05ddaf866e77360a551b3c05b/test /home/andy/Downloads/zig/build-release/zig
See also:
Use the compile variable @import("builtin").is_test
to detect a test build:
const std = @import("std"); const builtin = @import("builtin"); const expect = std.testing.expect; test "builtin.is_test" { try expect(isATest()); } fn isATest() bool { return builtin.is_test; }
$ zig test detect_test.zig 1/1 test "builtin.is_test"... OK All 1 tests passed.
The default test runner and the Zig Standard Library's testing namespace output messages to standard error.
The Zig Standard Library's testing
namespace contains useful functions to help you create tests. In addition to the expect
function, this document uses a couple of more functions as exemplified here:
const std = @import("std"); test "expectEqual demo" { const expected: i32 = 42; const actual = 42; // The first argument to `expectEqual` is the known, expected, result. // The second argument is the result of some expression. // The actual's type is casted to the type of expected. try std.testing.expectEqual(expected, actual); } test "expectError demo" { const expected_error = error.DemoError; const actual_error_union: anyerror!void = error.DemoError; // `expectError` will fail when the actual error is different than // the expected error. try std.testing.expectError(expected_error, actual_error_union); }
$ zig test testing_functions.zig 1/2 test "expectEqual demo"... OK 2/2 test "expectError demo"... OK All 2 tests passed.
The Zig Standard Library also contains functions to compare Slices, strings, and more. See the rest of the std.testing
namespace in the Zig Standard Library for more available functions.
zig test has a few command line parameters which affect the compilation. See zig test --help for a full list.
A variable is a unit of Memory storage.
Variables are never allowed to shadow identifiers from an outer scope.
It is generally preferable to use const
rather than var
when declaring a variable. This causes less work for both humans and computers to do when reading code, and creates more optimization opportunities.
Container level variables have static lifetime and are order-independent and lazily analyzed. The initialization value of container level variables is implicitly comptime. If a container level variable is const
then its value is comptime
-known, otherwise it is runtime-known.
var y: i32 = add(10, x); const x: i32 = add(12, 34); test "container level variables" { try expect(x == 46); try expect(y == 56); } fn add(a: i32, b: i32) i32 { return a + b; } const std = @import("std"); const expect = std.testing.expect;
$ zig test container_level_variables.zig 1/1 test "container level variables"... OK All 1 tests passed.
Container level variables may be declared inside a struct, union, or enum:
const std = @import("std"); const expect = std.testing.expect; test "namespaced container level variable" { try expect(foo() == 1235); try expect(foo() == 1236); } const S = struct { var x: i32 = 1234; }; fn foo() i32 { S.x += 1; return S.x; }
$ zig test namespaced_container_level_variable.zig 1/1 test "namespaced container level variable"... OK All 1 tests passed.
It is also possible to have local variables with static lifetime by using containers inside functions.
const std = @import("std"); const expect = std.testing.expect; test "static local variable" { try expect(foo() == 1235); try expect(foo() == 1236); } fn foo() i32 { const S = struct { var x: i32 = 1234; }; S.x += 1; return S.x; }
$ zig test static_local_variable.zig 1/1 test "static local variable"... OK All 1 tests passed.
The extern
keyword or @extern builtin function can be used to link against a variable that is exported from another object. The export
keyword or @export builtin function can be used to make a variable available to other objects at link time. In both cases, the type of the variable must be C ABI compatible.
See also:
A variable may be specified to be a thread-local variable using the threadlocal
keyword:
const std = @import("std"); const assert = std.debug.assert; threadlocal var x: i32 = 1234; test "thread local storage" { const thread1 = try std.Thread.spawn(.{}, testTls, .{}); const thread2 = try std.Thread.spawn(.{}, testTls, .{}); testTls(); thread1.join(); thread2.join(); } fn testTls() void { assert(x == 1234); x += 1; assert(x == 1235); }
$ zig test tls.zig 1/1 test "thread local storage"... OK All 1 tests passed.
For Single Threaded Builds, all thread local variables are treated as regular Container Level Variables.
Thread local variables may not be const
.
Local variables occur inside Functions, comptime blocks, and @cImport blocks.
When a local variable is const
, it means that after initialization, the variable's value will not change. If the initialization value of a const
variable is comptime-known, then the variable is also comptime
-known.
A local variable may be qualified with the comptime
keyword. This causes the variable's value to be comptime
-known, and all loads and stores of the variable to happen during semantic analysis of the program, rather than at runtime. All variables declared in a comptime
expression are implicitly comptime
variables.
const std = @import("std"); const expect = std.testing.expect; test "comptime vars" { var x: i32 = 1; comptime var y: i32 = 1; x += 1; y += 1; try expect(x == 2); try expect(y == 2); if (y != 2) { // This compile error never triggers because y is a comptime variable, // and so `y != 2` is a comptime value, and this if is statically evaluated. @compileError("wrong y value"); } }
$ zig test comptime_vars.zig 1/1 test "comptime vars"... OK All 1 tests passed.
const decimal_int = 98222; const hex_int = 0xff; const another_hex_int = 0xFF; const octal_int = 0o755; const binary_int = 0b11110000; // underscores may be placed between two digits as a visual separator const one_billion = 1_000_000_000; const binary_mask = 0b1_1111_1111; const permissions = 0o7_5_5; const big_address = 0xFF80_0000_0000_0000;
Integer literals have no size limitation, and if any undefined behavior occurs, the compiler catches it.
However, once an integer value is no longer known at compile-time, it must have a known size, and is vulnerable to undefined behavior.
fn divide(a: i32, b: i32) i32 { return a / b; }
In this function, values a
and b
are known only at runtime, and thus this division operation is vulnerable to both Integer Overflow and Division by Zero.
Operators such as +
and -
cause undefined behavior on integer overflow. Alternative operators are provided for wrapping and saturating arithmetic on all targets. +%
and -%
perform wrapping arithmetic while +|
and -|
perform saturating arithmetic.
Zig supports arbitrary bit-width integers, referenced by using an identifier of i
or u
followed by digits. For example, the identifier i7
refers to a signed 7-bit integer. The maximum allowed bit-width of an integer type is 65535
.
See also:
Zig has the following floating point types:
f16
- IEEE-754-2008 binary16f32
- IEEE-754-2008 binary32f64
- IEEE-754-2008 binary64f128
- IEEE-754-2008 binary128c_longdouble
- matches long double
for the target C ABI Float literals have type comptime_float
which is guaranteed to have the same precision and operations of the largest other floating point type, which is f128
.
Float literals coerce to any floating point type, and to any integer type when there is no fractional component.
const floating_point = 123.0E+77; const another_float = 123.0; const yet_another = 123.0e+77; const hex_floating_point = 0x103.70p-5; const another_hex_float = 0x103.70; const yet_another_hex_float = 0x103.70P-5; // underscores may be placed between two digits as a visual separator const lightspeed = 299_792_458.000_000; const nanosecond = 0.000_000_001; const more_hex = 0x1234_5678.9ABC_CDEFp-10;
There is no syntax for NaN, infinity, or negative infinity. For these special values, one must use the standard library:
const std = @import("std"); const inf = std.math.inf(f32); const negative_inf = -std.math.inf(f64); const nan = std.math.nan(f128);
By default floating point operations use Strict
mode, but you can switch to Optimized
mode on a per-block basis:
const std = @import("std"); const big = @as(f64, 1 << 40); export fn foo_strict(x: f64) f64 { return x + big - big; } export fn foo_optimized(x: f64) f64 { @setFloatMode(.Optimized); return x + big - big; }
$ zig build-obj foo.zig -O ReleaseFast
For this test we have to separate code into two object files - otherwise the optimizer figures out all the values at compile-time, which operates in strict mode.
const print = @import("std").debug.print; extern fn foo_strict(x: f64) f64; extern fn foo_optimized(x: f64) f64; pub fn main() void { const x = 0.001; print("optimized = {}\n", .{foo_optimized(x)}); print("strict = {}\n", .{foo_strict(x)}); }
$ zig build-exe float_mode.zig foo.o $ ./float_mode optimized = 1.0e-03 strict = 9.765625e-04
See also:
There is no operator overloading. When you see an operator in Zig, you know that it is doing something from this table, and nothing else.
Syntax | Relevant Types | Description | Example |
---|---|---|---|
a + b a += b | Addition.
| 2 + 5 == 7 | |
a +% b a +%= b | Wrapping Addition.
| @as(u32, std.math.maxInt(u32)) +% 1 == 0 | |
a +| b a +|= b | Saturating Addition.
| @as(u32, std.math.maxInt(u32)) +| 1 == @as(u32, std.math.maxInt(u32)) | |
a - b a -= b | Subtraction.
| 2 - 5 == -3 | |
a -% b a -%= b | Wrapping Subtraction.
| @as(u32, 0) -% 1 == std.math.maxInt(u32) | |
a -| b a -|= b | Saturating Subtraction.
| @as(u32, 0) -| 1 == 0 | |
-a | Negation.
| -1 == 0 - 1 | |
-%a | Wrapping Negation.
| -%@as(i32, std.math.minInt(i32)) == std.math.minInt(i32) | |
a * b a *= b | Multiplication.
| 2 * 5 == 10 | |
a *% b a *%= b | Wrapping Multiplication.
| @as(u8, 200) *% 2 == 144 | |
a *| b a *|= b | Saturating Multiplication.
| @as(u8, 200) *| 2 == 255 | |
a / b a /= b | Division.
| 10 / 5 == 2 | |
a % b a %= b | Remainder Division.
| 10 % 3 == 1 | |
a << b a <<= b | Bit Shift Left.
| 1 << 8 == 256 | |
a <<| b a <<|= b | Saturating Bit Shift Left.
| @as(u8, 1) <<| 8 == 255 | |
a >> b a >>= b | Bit Shift Right.
| 10 >> 1 == 5 | |
a & b a &= b | Bitwise AND.
| 0b011 & 0b101 == 0b001 | |
a | b a |= b | Bitwise OR.
| 0b010 | 0b100 == 0b110 | |
a ^ b a ^= b | Bitwise XOR.
| 0b011 ^ 0b101 == 0b110 | |
~a | Bitwise NOT. | ~@as(u8, 0b10101111) == 0b01010000 | |
a orelse b | If a is null , returns b ("default value"), otherwise returns the unwrapped value of a . Note that b may be a value of type noreturn. | const value: ?u32 = null; const unwrapped = value orelse 1234; unwrapped == 1234 | |
a.? | Equivalent to: a orelse unreachable | const value: ?u32 = 5678; value.? == 5678 | |
a catch b a catch |err| b | If a is an error , returns b ("default value"), otherwise returns the unwrapped value of a . Note that b may be a value of type noreturn. err is the error and is in scope of the expression b . | const value: anyerror!u32 = error.Broken; const unwrapped = value catch 1234; unwrapped == 1234 | |
a and b | If a is false , returns false without evaluating b . Otherwise, returns b . | (false and true) == false | |
a or b | If a is true , returns true without evaluating b . Otherwise, returns b . | false or true == true | |
!a | Boolean NOT. | !false == true | |
a == b | Returns true if a and b are equal, otherwise returns false . Invokes Peer Type Resolution for the operands. | (1 == 1) == true | |
a == null | Returns true if a is null , otherwise returns false . | const value: ?u32 = null; value == null | |
a != b | Returns false if a and b are equal, otherwise returns true . Invokes Peer Type Resolution for the operands. | (1 != 1) == false | |
a > b | Returns true if a is greater than b, otherwise returns false . Invokes Peer Type Resolution for the operands. | (2 > 1) == true | |
a >= b | Returns true if a is greater than or equal to b, otherwise returns false . Invokes Peer Type Resolution for the operands. | (2 >= 1) == true | |
a < b | Returns true if a is less than b, otherwise returns false . Invokes Peer Type Resolution for the operands. | (1 < 2) == true> | |
a <= b | Returns true if a is less than or equal to b, otherwise returns false . Invokes Peer Type Resolution for the operands. | (1 <= 2) == true | |
a ++ b | Array concatenation.
| const mem = @import("std").mem; const array1 = [_]u32{1,2}; const array2 = [_]u32{3,4}; const together = array1 ++ array2; mem.eql(u32, &together, &[_]u32{1,2,3,4}) | |
a ** b | Array multiplication.
| const mem = @import("std").mem; const pattern = "ab" ** 3; mem.eql(u8, pattern, "ababab") | |
a.* | Pointer dereference. | const x: u32 = 1234; const ptr = &x; ptr.* == 1234 | |
&a | All types | Address of. | const x: u32 = 1234; const ptr = &x; ptr.* == 1234 |
a || b | Merging Error Sets | const A = error{One}; const B = error{Two}; (A || B) == error{One, Two} |
x() x[] x.y x.* x.? a!b x{} !x -x -%x ~x &x ?x * / % ** *% *| || + - ++ +% -% +| -| << >> <<| & ^ | orelse catch == != < > <= >= and or = *= *%= *|= /= %= += +%= +|= -= -%= -|= <<= <<|= >>= &= ^= |=
const expect = @import("std").testing.expect; const assert = @import("std").debug.assert; const mem = @import("std").mem; // array literal const message = [_]u8{ 'h', 'e', 'l', 'l', 'o' }; // get the size of an array comptime { assert(message.len == 5); } // A string literal is a single-item pointer to an array literal. const same_message = "hello"; comptime { assert(mem.eql(u8, &message, same_message)); } test "iterate over an array" { var sum: usize = 0; for (message) |byte| { sum += byte; } try expect(sum == 'h' + 'e' + 'l' * 2 + 'o'); } // modifiable array var some_integers: [100]i32 = undefined; test "modify an array" { for (some_integers) |*item, i| { item.* = @intCast(i32, i); } try expect(some_integers[10] == 10); try expect(some_integers[99] == 99); } // array concatenation works if the values are known // at compile time const part_one = [_]i32{ 1, 2, 3, 4 }; const part_two = [_]i32{ 5, 6, 7, 8 }; const all_of_it = part_one ++ part_two; comptime { assert(mem.eql(i32, &all_of_it, &[_]i32{ 1, 2, 3, 4, 5, 6, 7, 8 })); } // remember that string literals are arrays const hello = "hello"; const world = "world"; const hello_world = hello ++ " " ++ world; comptime { assert(mem.eql(u8, hello_world, "hello world")); } // ** does repeating patterns const pattern = "ab" ** 3; comptime { assert(mem.eql(u8, pattern, "ababab")); } // initialize an array to zero const all_zero = [_]u16{0} ** 10; comptime { assert(all_zero.len == 10); assert(all_zero[5] == 0); } // use compile-time code to initialize an array var fancy_array = init: { var initial_value: [10]Point = undefined; for (initial_value) |*pt, i| { pt.* = Point{ .x = @intCast(i32, i), .y = @intCast(i32, i) * 2, }; } break :init initial_value; }; const Point = struct { x: i32, y: i32, }; test "compile-time array initialization" { try expect(fancy_array[4].x == 4); try expect(fancy_array[4].y == 8); } // call a function to initialize an array var more_points = [_]Point{makePoint(3)} ** 10; fn makePoint(x: i32) Point { return Point{ .x = x, .y = x * 2, }; } test "array initialization with function calls" { try expect(more_points[4].x == 3); try expect(more_points[4].y == 6); try expect(more_points.len == 10); }
$ zig test arrays.zig 1/4 test "iterate over an array"... OK 2/4 test "modify an array"... OK 3/4 test "compile-time array initialization"... OK 4/4 test "array initialization with function calls"... OK All 4 tests passed.
See also:
Similar to Enum Literals and Anonymous Struct Literals the type can be omitted from array literals:
const std = @import("std"); const expect = std.testing.expect; test "anonymous list literal syntax" { var array: [4]u8 = .{11, 22, 33, 44}; try expect(array[0] == 11); try expect(array[1] == 22); try expect(array[2] == 33); try expect(array[3] == 44); }
$ zig test anon_list.zig 1/1 test "anonymous list literal syntax"... OK All 1 tests passed.
If there is no type in the result location then an anonymous list literal actually turns into a struct with numbered field names:
const std = @import("std"); const expect = std.testing.expect; test "fully anonymous list literal" { try dump(.{ @as(u32, 1234), @as(f64, 12.34), true, "hi"}); } fn dump(args: anytype) !void { try expect(args.@"0" == 1234); try expect(args.@"1" == 12.34); try expect(args.@"2"); try expect(args.@"3"[0] == 'h'); try expect(args.@"3"[1] == 'i'); }
$ zig test infer_list_literal.zig 1/1 test "fully anonymous list literal"... OK All 1 tests passed.
Multidimensional arrays can be created by nesting arrays:
const std = @import("std"); const expect = std.testing.expect; const mat4x4 = [4][4]f32{ [_]f32{ 1.0, 0.0, 0.0, 0.0 }, [_]f32{ 0.0, 1.0, 0.0, 1.0 }, [_]f32{ 0.0, 0.0, 1.0, 0.0 }, [_]f32{ 0.0, 0.0, 0.0, 1.0 }, }; test "multidimensional arrays" { // Access the 2D array by indexing the outer array, and then the inner array. try expect(mat4x4[1][1] == 1.0); // Here we iterate with for loops. for (mat4x4) |row, row_index| { for (row) |cell, column_index| { if (row_index == column_index) { try expect(cell == 1.0); } } } }
$ zig test multidimensional.zig 1/1 test "multidimensional arrays"... OK All 1 tests passed.
The syntax [N:x]T
describes an array which has a sentinel element of value x
at the index corresponding to len
.
const std = @import("std"); const expect = std.testing.expect; test "null terminated array" { const array = [_:0]u8 {1, 2, 3, 4}; try expect(@TypeOf(array) == [4:0]u8); try expect(array.len == 4); try expect(array[4] == 0); }
$ zig test null_terminated_array.zig 1/1 test "null terminated array"... OK All 1 tests passed.
See also:
A vector is a group of booleans, Integers, Floats, or Pointers which are operated on in parallel using SIMD instructions. Vector types are created with the builtin function @Type, or using the shorthand function std.meta.Vector
.
Vectors support the same builtin operators as their underlying base types. These operations are performed element-wise, and return a vector of the same length as the input vectors. This includes:
+
, -
, /
, *
, @divFloor
, @sqrt
, @ceil
, @log
, etc.)>>
, <<
, &
, |
, ~
, etc.)<
, >
, ==
, etc.)It is prohibited to use a math operator on a mixture of scalars (individual numbers) and vectors. Zig provides the @splat builtin to easily convert from scalars to vectors, and it supports @reduce and array indexing syntax to convert from vectors to scalars. Vectors also support assignment to and from fixed-length arrays with comptime known length.
For rearranging elements within and between vectors, Zig provides the @shuffle and @select functions.
Operations on vectors shorter than the target machine's native SIMD size will typically compile to single SIMD instructions, while vectors longer than the target machine's native SIMD size will compile to multiple SIMD instructions. If a given operation doesn't have SIMD support on the target architecture, the compiler will default to operating on each vector element one at a time. Zig supports any comptime-known vector length up to 2^32-1, although small powers of two (2-64) are most typical. Note that excessively long vector lengths (e.g. 2^20) may result in compiler crashes on current versions of Zig.
const std = @import("std"); const Vector = std.meta.Vector; const expectEqual = std.testing.expectEqual; test "Basic vector usage" { // Vectors have a compile-time known length and base type, // and can be assigned to using array literal syntax const a: Vector(4, i32) = [_]i32{ 1, 2, 3, 4 }; const b: Vector(4, i32) = [_]i32{ 5, 6, 7, 8 }; // Math operations take place element-wise const c = a + b; // Individual vector elements can be accessed using array indexing syntax. try expectEqual(6, c[0]); try expectEqual(8, c[1]); try expectEqual(10, c[2]); try expectEqual(12, c[3]); } test "Conversion between vectors, arrays, and slices" { // Vectors and fixed-length arrays can be automatically assigned back and forth var arr1: [4]f32 = [_]f32{ 1.1, 3.2, 4.5, 5.6 }; var vec: Vector(4, f32) = arr1; var arr2: [4]f32 = vec; try expectEqual(arr1, arr2); // You can also assign from a slice with comptime-known length to a vector using .* const vec2: Vector(2, f32) = arr1[1..3].*; var slice: []const f32 = &arr1; var offset: u32 = 1; // To extract a comptime-known length from a runtime-known offset, // first extract a new slice from the starting offset, then an array of // comptime known length const vec3: Vector(2, f32) = slice[offset..][0..2].*; try expectEqual(slice[offset], vec2[0]); try expectEqual(slice[offset + 1], vec2[1]); try expectEqual(vec2, vec3); }
$ zig test vector_example.zig 1/2 test "Basic vector usage"... OK 2/2 test "Conversion between vectors, arrays, and slices"... OK All 2 tests passed.
TODO talk about C ABI interop
TODO consider suggesting std.MultiArrayList
See also:
Zig has two kinds of pointers: single-item and many-item.
*T
- single-item pointer to exactly one item. ptr.*
[*]T
- many-item pointer to unknown number of items. ptr[i]
ptr[start..end]
ptr + x
, ptr - x
T
must have a known size, which means that it cannot be c_void
or any other opaque type.These types are closely related to Arrays and Slices:
*[N]T
- pointer to N items, same as single-item pointer to an array. array_ptr[i]
array_ptr[start..end]
array_ptr.len
[]T
- pointer to runtime-known number of items. slice[i]
slice[start..end]
slice.len
Use &x
to obtain a single-item pointer:
const expect = @import("std").testing.expect; test "address of syntax" { // Get the address of a variable: const x: i32 = 1234; const x_ptr = &x; // Dereference a pointer: try expect(x_ptr.* == 1234); // When you get the address of a const variable, you get a const single-item pointer. try expect(@TypeOf(x_ptr) == *const i32); // If you want to mutate the value, you'd need an address of a mutable variable: var y: i32 = 5678; const y_ptr = &y; try expect(@TypeOf(y_ptr) == *i32); y_ptr.* += 1; try expect(y_ptr.* == 5679); } test "pointer array access" { // Taking an address of an individual element gives a // single-item pointer. This kind of pointer // does not support pointer arithmetic. var array = [_]u8{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }; const ptr = &array[2]; try expect(@TypeOf(ptr) == *u8); try expect(array[2] == 3); ptr.* += 1; try expect(array[2] == 4); }
$ zig test single_item_pointer_test.zig 1/2 test "address of syntax"... OK 2/2 test "pointer array access"... OK All 2 tests passed.
In Zig, we generally prefer Slices rather than Sentinel-Terminated Pointers. You can turn an array or pointer into a slice using slice syntax.
Slices have bounds checking and are therefore protected against this kind of undefined behavior. This is one reason we prefer slices to pointers.
const expect = @import("std").testing.expect; test "pointer slicing" { var array = [_]u8{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }; const slice = array[2..4]; try expect(slice.len == 2); try expect(array[3] == 4); slice[1] += 1; try expect(array[3] == 5); }
$ zig test slice_bounds.zig 1/1 test "pointer slicing"... OK All 1 tests passed.
Pointers work at compile-time too, as long as the code does not depend on an undefined memory layout:
const expect = @import("std").testing.expect; test "comptime pointers" { comptime { var x: i32 = 1; const ptr = &x; ptr.* += 1; x += 1; try expect(ptr.* == 3); } }
$ zig test comptime_pointers.zig 1/1 test "comptime pointers"... OK All 1 tests passed.
To convert an integer address into a pointer, use @intToPtr
. To convert a pointer to an integer, use @ptrToInt
:
const expect = @import("std").testing.expect; test "@ptrToInt and @intToPtr" { const ptr = @intToPtr(*i32, 0xdeadbee0); const addr = @ptrToInt(ptr); try expect(@TypeOf(addr) == usize); try expect(addr == 0xdeadbee0); }
$ zig test integer_pointer_conversion.zig 1/1 test "@ptrToInt and @intToPtr"... OK All 1 tests passed.
Zig is able to preserve memory addresses in comptime code, as long as the pointer is never dereferenced:
const expect = @import("std").testing.expect; test "comptime @intToPtr" { comptime { // Zig is able to do this at compile-time, as long as // ptr is never dereferenced. const ptr = @intToPtr(*i32, 0xdeadbee0); const addr = @ptrToInt(ptr); try expect(@TypeOf(addr) == usize); try expect(addr == 0xdeadbee0); } }
$ zig test comptime_pointer_conversion.zig 1/1 test "comptime @intToPtr"... OK All 1 tests passed.
See also:
Loads and stores are assumed to not have side effects. If a given load or store should have side effects, such as Memory Mapped Input/Output (MMIO), use volatile
. In the following code, loads and stores with mmio_ptr
are guaranteed to all happen and in the same order as in source code:
const expect = @import("std").testing.expect; test "volatile" { const mmio_ptr = @intToPtr(*volatile u8, 0x12345678); try expect(@TypeOf(mmio_ptr) == *volatile u8); }
$ zig test volatile.zig 1/1 test "volatile"... OK All 1 tests passed.
Note that volatile
is unrelated to concurrency and Atomics. If you see code that is using volatile
for something other than Memory Mapped Input/Output, it is probably a bug.
To convert one pointer type to another, use @ptrCast. This is an unsafe operation that Zig cannot protect you against. Use @ptrCast
only when other conversions are not possible.
const std = @import("std"); const expect = std.testing.expect; test "pointer casting" { const bytes align(@alignOf(u32)) = [_]u8{ 0x12, 0x12, 0x12, 0x12 }; const u32_ptr = @ptrCast(*const u32, &bytes); try expect(u32_ptr.* == 0x12121212); // Even this example is contrived - there are better ways to do the above than // pointer casting. For example, using a slice narrowing cast: const u32_value = std.mem.bytesAsSlice(u32, bytes[0..])[0]; try expect(u32_value == 0x12121212); // And even another way, the most straightforward way to do it: try expect(@bitCast(u32, bytes) == 0x12121212); } test "pointer child type" { // pointer types have a `child` field which tells you the type they point to. try expect(@typeInfo(*u32).Pointer.child == u32); }
$ zig test pointer_casting.zig 1/2 test "pointer casting"... OK 2/2 test "pointer child type"... OK All 2 tests passed.
Each type has an alignment - a number of bytes such that, when a value of the type is loaded from or stored to memory, the memory address must be evenly divisible by this number. You can use @alignOf to find out this value for any type.
Alignment depends on the CPU architecture, but is always a power of two, and less than 1 << 29
.
In Zig, a pointer type has an alignment value. If the value is equal to the alignment of the underlying type, it can be omitted from the type:
const std = @import("std"); const builtin = @import("builtin"); const expect = std.testing.expect; test "variable alignment" { var x: i32 = 1234; const align_of_i32 = @alignOf(@TypeOf(x)); try expect(@TypeOf(&x) == *i32); try expect(*i32 == *align(align_of_i32) i32); if (builtin.target.cpu.arch == .x86_64) { try expect(@typeInfo(*i32).Pointer.alignment == 4); } }
$ zig test variable_alignment.zig 1/1 test "variable alignment"... OK All 1 tests passed.
In the same way that a *i32
can be coerced to a *const i32
, a pointer with a larger alignment can be implicitly cast to a pointer with a smaller alignment, but not vice versa.
You can specify alignment on variables and functions. If you do this, then pointers to them get the specified alignment:
const expect = @import("std").testing.expect; var foo: u8 align(4) = 100; test "global variable alignment" { try expect(@typeInfo(@TypeOf(&foo)).Pointer.alignment == 4); try expect(@TypeOf(&foo) == *align(4) u8); const as_pointer_to_array: *[1]u8 = &foo; const as_slice: []u8 = as_pointer_to_array; try expect(@TypeOf(as_slice) == []align(4) u8); } fn derp() align(@sizeOf(usize) * 2) i32 { return 1234; } fn noop1() align(1) void {} fn noop4() align(4) void {} test "function alignment" { try expect(derp() == 1234); try expect(@TypeOf(noop1) == fn() align(1) void); try expect(@TypeOf(noop4) == fn() align(4) void); noop1(); noop4(); }
$ zig test variable_func_alignment.zig 1/2 test "global variable alignment"... OK 2/2 test "function alignment"... OK All 2 tests passed.
If you have a pointer or a slice that has a small alignment, but you know that it actually has a bigger alignment, use @alignCast to change the pointer into a more aligned pointer. This is a no-op at runtime, but inserts a safety check:
const std = @import("std"); test "pointer alignment safety" { var array align(4) = [_]u32{ 0x11111111, 0x11111111 }; const bytes = std.mem.sliceAsBytes(array[0..]); try std.testing.expect(foo(bytes) == 0x11111111); } fn foo(bytes: []u8) u32 { const slice4 = bytes[1..5]; const int_slice = std.mem.bytesAsSlice(u32, @alignCast(4, slice4)); return int_slice[0]; }
$ zig test test.zig 1/1 test "pointer alignment safety"... thread 792246 panic: incorrect alignment /home/andy/Downloads/zig/docgen_tmp/test.zig:10:63: 0x2080ec in foo (test) const int_slice = std.mem.bytesAsSlice(u32, @alignCast(4, slice4)); ^ /home/andy/Downloads/zig/docgen_tmp/test.zig:6:31: 0x207a69 in test "pointer alignment safety" (test) try std.testing.expect(foo(bytes) == 0x11111111); ^ /home/andy/Downloads/zig/lib/std/special/test_runner.zig:80:28: 0x22f6d3 in std.special.main (test) } else test_fn.func(); ^ /home/andy/Downloads/zig/lib/std/start.zig:543:22: 0x2280cc in std.start.callMain (test) root.main(); ^ /home/andy/Downloads/zig/lib/std/start.zig:495:12: 0x20953e in std.start.callMainWithArgs (test) return @call(.{ .modifier = .always_inline }, callMain, .{}); ^ /home/andy/Downloads/zig/lib/std/start.zig:409:17: 0x208546 in std.start.posixCallMainAndExit (test) std.os.exit(@call(.{ .modifier = .always_inline }, callMainWithArgs, .{ argc, argv, envp })); ^ /home/andy/Downloads/zig/lib/std/start.zig:322:5: 0x208352 in std.start._start (test) @call(.{ .modifier = .never_inline }, posixCallMainAndExit, .{}); ^ error: the following test command crashed: docgen_tmp/zig-cache/o/8e4964e05ddaf866e77360a551b3c05b/test /home/andy/Downloads/zig/build-release/zig
This pointer attribute allows a pointer to have address zero. This is only ever needed on the freestanding OS target, where the address zero is mappable. If you want to represent null pointers, use Optional Pointers instead. Optional Pointers with allowzero
are not the same size as pointers. In this code example, if the pointer did not have the allowzero
attribute, this would be a Pointer Cast Invalid Null panic:
const std = @import("std"); const expect = std.testing.expect; test "allowzero" { var zero: usize = 0; var ptr = @intToPtr(*allowzero i32, zero); try expect(@ptrToInt(ptr) == 0); }
$ zig test allowzero.zig 1/1 test "allowzero"... OK All 1 tests passed.
The syntax [*:x]T
describes a pointer that has a length determined by a sentinel value. This provides protection against buffer overflow and overreads.
const std = @import("std"); // This is also available as `std.c.printf`. pub extern "c" fn printf(format: [*:0]const u8, ...) c_int; pub fn main() anyerror!void { _ = printf("Hello, world!\n"); // OK const msg = "Hello, world!\n"; const non_null_terminated_msg: [msg.len]u8 = msg.*; _ = printf(&non_null_terminated_msg); }
$ zig build-exe test.zig -lc ./docgen_tmp/test.zig:11:17: error: expected type '[*:0]const u8', found '*const [14]u8' _ = printf(&non_null_terminated_msg); ^ ./docgen_tmp/test.zig:11:17: note: destination pointer requires a terminating '0' sentinel _ = printf(&non_null_terminated_msg); ^
See also:
const expect = @import("std").testing.expect; test "basic slices" { var array = [_]i32{ 1, 2, 3, 4 }; // A slice is a pointer and a length. The difference between an array and // a slice is that the array's length is part of the type and known at // compile-time, whereas the slice's length is known at runtime. // Both can be accessed with the `len` field. var known_at_runtime_zero: usize = 0; const slice = array[known_at_runtime_zero..array.len]; try expect(&slice[0] == &array[0]); try expect(slice.len == array.len); // Using the address-of operator on a slice gives a single-item pointer, // while using the `ptr` field gives a many-item pointer. try expect(@TypeOf(slice.ptr) == [*]i32); try expect(@TypeOf(&slice[0]) == *i32); try expect(@ptrToInt(slice.ptr) == @ptrToInt(&slice[0])); // Slices have array bounds checking. If you try to access something out // of bounds, you'll get a safety check failure: slice[10] += 1; // Note that `slice.ptr` does not invoke safety checking, while `&slice[0]` // asserts that the slice has len >= 1. }
$ zig test test.zig 1/1 test "basic slices"... thread 792342 panic: index out of bounds /home/andy/Downloads/zig/docgen_tmp/test.zig:22:10: 0x207c83 in test "basic slices" (test) slice[10] += 1; ^ /home/andy/Downloads/zig/lib/std/special/test_runner.zig:80:28: 0x22f6d3 in std.special.main (test) } else test_fn.func(); ^ /home/andy/Downloads/zig/lib/std/start.zig:543:22: 0x2280cc in std.start.callMain (test) root.main(); ^ /home/andy/Downloads/zig/lib/std/start.zig:495:12: 0x20953e in std.start.callMainWithArgs (test) return @call(.{ .modifier = .always_inline }, callMain, .{}); ^ /home/andy/Downloads/zig/lib/std/start.zig:409:17: 0x2085d6 in std.start.posixCallMainAndExit (test) std.os.exit(@call(.{ .modifier = .always_inline }, callMainWithArgs, .{ argc, argv, envp })); ^ /home/andy/Downloads/zig/lib/std/start.zig:322:5: 0x2083e2 in std.start._start (test) @call(.{ .modifier = .never_inline }, posixCallMainAndExit, .{}); ^ error: the following test command crashed: docgen_tmp/zig-cache/o/8e4964e05ddaf866e77360a551b3c05b/test /home/andy/Downloads/zig/build-release/zig
This is one reason we prefer slices to pointers.
const std = @import("std"); const expect = std.testing.expect; const mem = std.mem; const fmt = std.fmt; test "using slices for strings" { // Zig has no concept of strings. String literals are const pointers // to null-terminated arrays of u8, and by convention parameters // that are "strings" are expected to be UTF-8 encoded slices of u8. // Here we coerce *const [5:0]u8 and *const [6:0]u8 to []const u8 const hello: []const u8 = "hello"; const world: []const u8 = "世界"; var all_together: [100]u8 = undefined; // You can use slice syntax on an array to convert an array into a slice. const all_together_slice = all_together[0..]; // String concatenation example. const hello_world = try fmt.bufPrint(all_together_slice, "{s} {s}", .{ hello, world }); // Generally, you can use UTF-8 and not worry about whether something is a // string. If you don't need to deal with individual characters, no need // to decode. try expect(mem.eql(u8, hello_world, "hello 世界")); } test "slice pointer" { var array: [10]u8 = undefined; const ptr = &array; // You can use slicing syntax to convert a pointer into a slice: const slice = ptr[0..5]; slice[2] = 3; try expect(slice[2] == 3); // The slice is mutable because we sliced a mutable pointer. // Furthermore, it is actually a pointer to an array, since the start // and end indexes were both comptime-known. try expect(@TypeOf(slice) == *[5]u8); // You can also slice a slice: const slice2 = slice[2..3]; try expect(slice2.len == 1); try expect(slice2[0] == 3); }
$ zig test slices.zig 1/2 test "using slices for strings"... OK 2/2 test "slice pointer"... OK All 2 tests passed.
See also:
The syntax [:x]T
is a slice which has a runtime known length and also guarantees a sentinel value at the element indexed by the length. The type does not guarantee that there are no sentinel elements before that. Sentinel-terminated slices allow element access to the len
index.
const std = @import("std"); const expect = std.testing.expect; test "null terminated slice" { const slice: [:0]const u8 = "hello"; try expect(slice.len == 5); try expect(slice[5] == 0); }
$ zig test null_terminated_slice.zig 1/1 test "null terminated slice"... OK All 1 tests passed.
Sentinel-terminated slices can also be created using a variation of the slice syntax data[start..end :x]
, where data
is a many-item pointer, array or slice and x
is the sentinel value.
const std = @import("std"); const expect = std.testing.expect; test "null terminated slicing" { var array = [_]u8{ 3, 2, 1, 0, 3, 2, 1, 0 }; var runtime_length: usize = 3; const slice = array[0..runtime_length :0]; try expect(@TypeOf(slice) == [:0]u8); try expect(slice.len == 3); }
$ zig test null_terminated_slicing.zig 1/1 test "null terminated slicing"... OK All 1 tests passed.
Sentinel-terminated slicing asserts that the element in the sentinel position of the backing data is actually the sentinel value. If this is not the case, safety-protected Undefined Behavior results.
const std = @import("std"); const expect = std.testing.expect; test "sentinel mismatch" { var array = [_]u8{ 3, 2, 1, 0 }; // Creating a sentinel-terminated slice from the array with a length of 2 // will result in the value `1` occupying the sentinel element position. // This does not match the indicated sentinel value of `0` and will lead // to a runtime panic. var runtime_length: usize = 2; const slice = array[0..runtime_length :0]; _ = slice; }
$ zig test test.zig 1/1 test "sentinel mismatch"... thread 792492 panic: sentinel mismatch /home/andy/Downloads/zig/docgen_tmp/test.zig:12:24: 0x207a3a in test "sentinel mismatch" (test) const slice = array[0..runtime_length :0]; ^ /home/andy/Downloads/zig/lib/std/special/test_runner.zig:80:28: 0x22f463 in std.special.main (test) } else test_fn.func(); ^ /home/andy/Downloads/zig/lib/std/start.zig:543:22: 0x227e5c in std.start.callMain (test) root.main(); ^ /home/andy/Downloads/zig/lib/std/start.zig:495:12: 0x20927e in std.start.callMainWithArgs (test) return @call(.{ .modifier = .always_inline }, callMain, .{}); ^ /home/andy/Downloads/zig/lib/std/start.zig:409:17: 0x208316 in std.start.posixCallMainAndExit (test) std.os.exit(@call(.{ .modifier = .always_inline }, callMainWithArgs, .{ argc, argv, envp })); ^ /home/andy/Downloads/zig/lib/std/start.zig:322:5: 0x208122 in std.start._start (test) @call(.{ .modifier = .never_inline }, posixCallMainAndExit, .{}); ^ error: the following test command crashed: docgen_tmp/zig-cache/o/8e4964e05ddaf866e77360a551b3c05b/test /home/andy/Downloads/zig/build-release/zig
See also:
// Declare a struct. // Zig gives no guarantees about the order of fields and the size of // the struct but the fields are guaranteed to be ABI-aligned. const Point = struct { x: f32, y: f32, }; // Maybe we want to pass it to OpenGL so we want to be particular about // how the bytes are arranged. const Point2 = packed struct { x: f32, y: f32, }; // Declare an instance of a struct. const p = Point { .x = 0.12, .y = 0.34, }; // Maybe we're not ready to fill out some of the fields. var p2 = Point { .x = 0.12, .y = undefined, }; // Structs can have methods // Struct methods are not special, they are only namespaced // functions that you can call with dot syntax. const Vec3 = struct { x: f32, y: f32, z: f32, pub fn init(x: f32, y: f32, z: f32) Vec3 { return Vec3 { .x = x, .y = y, .z = z, }; } pub fn dot(self: Vec3, other: Vec3) f32 { return self.x * other.x + self.y * other.y + self.z * other.z; } }; const expect = @import("std").testing.expect; test "dot product" { const v1 = Vec3.init(1.0, 0.0, 0.0); const v2 = Vec3.init(0.0, 1.0, 0.0); try expect(v1.dot(v2) == 0.0); // Other than being available to call with dot syntax, struct methods are // not special. You can reference them as any other declaration inside // the struct: try expect(Vec3.dot(v1, v2) == 0.0); } // Structs can have declarations. // Structs can have 0 fields. const Empty = struct { pub const PI = 3.14; }; test "struct namespaced variable" { try expect(Empty.PI == 3.14); try expect(@sizeOf(Empty) == 0); // you can still instantiate an empty struct const does_nothing = Empty {}; _ = does_nothing; } // struct field order is determined by the compiler for optimal performance. // however, you can still calculate a struct base pointer given a field pointer: fn setYBasedOnX(x: *f32, y: f32) void { const point = @fieldParentPtr(Point, "x", x); point.y = y; } test "field parent pointer" { var point = Point { .x = 0.1234, .y = 0.5678, }; setYBasedOnX(&point.x, 0.9); try expect(point.y == 0.9); } // You can return a struct from a function. This is how we do generics // in Zig: fn LinkedList(comptime T: type) type { return struct { pub const Node = struct { prev: ?*Node, next: ?*Node, data: T, }; first: ?*Node, last: ?*Node, len: usize, }; } test "linked list" { // Functions called at compile-time are memoized. This means you can // do this: try expect(LinkedList(i32) == LinkedList(i32)); var list = LinkedList(i32) { .first = null, .last = null, .len = 0, }; try expect(list.len == 0); // Since types are first class values you can instantiate the type // by assigning it to a variable: const ListOfInts = LinkedList(i32); try expect(ListOfInts == LinkedList(i32)); var node = ListOfInts.Node { .prev = null, .next = null, .data = 1234, }; var list2 = LinkedList(i32) { .first = &node, .last = &node, .len = 1, }; try expect(list2.first.?.data == 1234); }
$ zig test structs.zig 1/4 test "dot product"... OK 2/4 test "struct namespaced variable"... OK 3/4 test "field parent pointer"... OK 4/4 test "linked list"... OK All 4 tests passed.
Each struct field may have an expression indicating the default field value. Such expressions are executed at comptime, and allow the field to be omitted in a struct literal expression:
const Foo = struct { a: i32 = 1234, b: i32, }; test "default struct initialization fields" { const x = Foo{ .b = 5, }; if (x.a + x.b != 1239) { @compileError("it's even comptime known!"); } }
$ zig test default_field_values.zig 1/1 test "default struct initialization fields"... OK All 1 tests passed.
An extern struct
has in-memory layout guaranteed to match the C ABI for the target.
This kind of struct should only be used for compatibility with the C ABI. Every other use case should be solved with packed struct or normal struct.
See also:
Unlike normal structs, packed
structs have guaranteed in-memory layout:
bool
fields use exactly 1 bit. This means that a packed struct
can participate in a @bitCast or a @ptrCast to reinterpret memory. This even works at comptime:
const std = @import("std"); const native_endian = @import("builtin").target.cpu.arch.endian(); const expect = std.testing.expect; const Full = packed struct { number: u16, }; const Divided = packed struct { half1: u8, quarter3: u4, quarter4: u4, }; test "@bitCast between packed structs" { try doTheTest(); comptime try doTheTest(); } fn doTheTest() !void { try expect(@sizeOf(Full) == 2); try expect(@sizeOf(Divided) == 2); var full = Full{ .number = 0x1234 }; var divided = @bitCast(Divided, full); switch (native_endian) { .Big => { try expect(divided.half1 == 0x12); try expect(divided.quarter3 == 0x3); try expect(divided.quarter4 == 0x4); }, .Little => { try expect(divided.half1 == 0x34); try expect(divided.quarter3 == 0x2); try expect(divided.quarter4 == 0x1); }, } }
$ zig test packed_structs.zig 1/1 test "@bitCast between packed structs"... OK All 1 tests passed.
Zig allows the address to be taken of a non-byte-aligned field:
const std = @import("std"); const expect = std.testing.expect; const BitField = packed struct { a: u3, b: u3, c: u2, }; var foo = BitField{ .a = 1, .b = 2, .c = 3, }; test "pointer to non-byte-aligned field" { const ptr = &foo.b; try expect(ptr.* == 2); }
$ zig test pointer_to_non-byte_aligned_field.zig 1/1 test "pointer to non-byte-aligned field"... OK All 1 tests passed.
However, the pointer to a non-byte-aligned field has special properties and cannot be passed when a normal pointer is expected:
const std = @import("std"); const expect = std.testing.expect; const BitField = packed struct { a: u3, b: u3, c: u2, }; var bit_field = BitField{ .a = 1, .b = 2, .c = 3, }; test "pointer to non-bit-aligned field" { try expect(bar(&bit_field.b) == 2); } fn bar(x: *const u3) u3 { return x.*; }
$ zig test test.zig ./docgen_tmp/test.zig:17:30: error: expected type '*const u3', found '*align(:3:1) u3' try expect(bar(&bit_field.b) == 2); ^
In this case, the function bar
cannot be called because the pointer to the non-ABI-aligned field mentions the bit offset, but the function expects an ABI-aligned pointer.
Pointers to non-ABI-aligned fields share the same address as the other fields within their host integer:
const std = @import("std"); const expect = std.testing.expect; const BitField = packed struct { a: u3, b: u3, c: u2, }; var bit_field = BitField{ .a = 1, .b = 2, .c = 3, }; test "pointer to non-bit-aligned field" { try expect(@ptrToInt(&bit_field.a) == @ptrToInt(&bit_field.b)); try expect(@ptrToInt(&bit_field.a) == @ptrToInt(&bit_field.c)); }
$ zig test pointer_to_non-bit_aligned_field.zig 1/1 test "pointer to non-bit-aligned field"... OK All 1 tests passed.
This can be observed with @bitOffsetOf and offsetOf:
const std = @import("std"); const expect = std.testing.expect; const BitField = packed struct { a: u3, b: u3, c: u2, }; test "pointer to non-bit-aligned field" { comptime { try expect(@bitOffsetOf(BitField, "a") == 0); try expect(@bitOffsetOf(BitField, "b") == 3); try expect(@bitOffsetOf(BitField, "c") == 6); try expect(@offsetOf(BitField, "a") == 0); try expect(@offsetOf(BitField, "b") == 0); try expect(@offsetOf(BitField, "c") == 0); } }
$ zig test test_bitOffsetOf_offsetOf.zig 1/1 test "pointer to non-bit-aligned field"... OK All 1 tests passed.
Packed structs have 1-byte alignment. However if you have an overaligned pointer to a packed struct, Zig should correctly understand the alignment of fields. However there is a bug:
const S = packed struct { a: u32, b: u32, }; test "overaligned pointer to packed struct" { var foo: S align(4) = undefined; const ptr: *align(4) S = &foo; const ptr_to_b: *u32 = &ptr.b; _ = ptr_to_b; }
$ zig test test.zig ./docgen_tmp/test.zig:8:32: error: expected type '*u32', found '*align(1) u32' const ptr_to_b: *u32 = &ptr.b; ^
When this bug is fixed, the above test in the documentation will unexpectedly pass, which will cause the test suite to fail, notifying the bug fixer to update these docs.
It's also possible to set alignment of struct fields:
const std = @import("std"); const expectEqual = std.testing.expectEqual; test "aligned struct fields" { const S = struct { a: u32 align(2), b: u32 align(64), }; var foo = S{ .a = 1, .b = 2 }; try expectEqual(64, @alignOf(S)); try expectEqual(*align(2) u32, @TypeOf(&foo.a)); try expectEqual(*align(64) u32, @TypeOf(&foo.b)); }
$ zig test test_aligned_struct_fields.zig 1/1 test "aligned struct fields"... OK All 1 tests passed.
Using packed structs with volatile is problematic, and may be a compile error in the future. For details on this subscribe to this issue. TODO update these docs with a recommendation on how to use packed structs with MMIO (the use case for volatile packed structs) once this issue is resolved. Don't worry, there will be a good solution for this use case in zig.
Since all structs are anonymous, Zig infers the type name based on a few rules.
return
expression, it gets named after the function it is returning from, with the parameter values serialized.(anonymous struct at file.zig:7:38)
.const std = @import("std"); pub fn main() void { const Foo = struct {}; std.debug.print("variable: {s}\n", .{@typeName(Foo)}); std.debug.print("anonymous: {s}\n", .{@typeName(struct {})}); std.debug.print("function: {s}\n", .{@typeName(List(i32))}); } fn List(comptime T: type) type { return struct { x: T, }; }
$ zig build-exe struct_name.zig $ ./struct_name variable: Foo anonymous: struct:6:53 function: List(i32)
Zig allows omitting the struct type of a literal. When the result is coerced, the struct literal will directly instantiate the result location, with no copy:
const std = @import("std"); const expect = std.testing.expect; const Point = struct {x: i32, y: i32}; test "anonymous struct literal" { var pt: Point = .{ .x = 13, .y = 67, }; try expect(pt.x == 13); try expect(pt.y == 67); }
$ zig test struct_result.zig 1/1 test "anonymous struct literal"... OK All 1 tests passed.
The struct type can be inferred. Here the result location does not include a type, and so Zig infers the type:
const std = @import("std"); const expect = std.testing.expect; test "fully anonymous struct" { try dump(.{ .int = @as(u32, 1234), .float = @as(f64, 12.34), .b = true, .s = "hi", }); } fn dump(args: anytype) !void { try expect(args.int == 1234); try expect(args.float == 12.34); try expect(args.b); try expect(args.s[0] == 'h'); try expect(args.s[1] == 'i'); }
$ zig test struct_anon.zig 1/1 test "fully anonymous struct"... OK All 1 tests passed.
Anonymous structs can be created without specifying field names, and are referred to as "tuples".
The fields are implicitly named using numbers starting from 0. Because their names are integers, the @"0"
syntax must be used to access them. Names inside @""
are always recognised as identifiers.
Like arrays, tuples have a .len field, can be indexed and work with the ++ and ** operators. They can also be iterated over with inline for.
const std = @import("std"); const expect = std.testing.expect; test "tuple" { const values = .{ @as(u32, 1234), @as(f64, 12.34), true, "hi", } ++ .{false} ** 2; try expect(values[0] == 1234); try expect(values[4] == false); inline for (values) |v, i| { if (i != 2) continue; try expect(v); } try expect(values.len == 6); try expect(values.@"3"[0] == 'h'); }
$ zig test tuple.zig 1/1 test "tuple"... OK All 1 tests passed.
See also:
const expect = @import("std").testing.expect; const mem = @import("std").mem; // Declare an enum. const Type = enum { ok, not_ok, }; // Declare a specific instance of the enum variant. const c = Type.ok; // If you want access to the ordinal value of an enum, you // can specify the tag type. const Value = enum(u2) { zero, one, two, }; // Now you can cast between u2 and Value. // The ordinal value starts from 0, counting up for each member. test "enum ordinal value" { try expect(@enumToInt(Value.zero) == 0); try expect(@enumToInt(Value.one) == 1); try expect(@enumToInt(Value.two) == 2); } // You can override the ordinal value for an enum. const Value2 = enum(u32) { hundred = 100, thousand = 1000, million = 1000000, }; test "set enum ordinal value" { try expect(@enumToInt(Value2.hundred) == 100); try expect(@enumToInt(Value2.thousand) == 1000); try expect(@enumToInt(Value2.million) == 1000000); } // Enums can have methods, the same as structs and unions. // Enum methods are not special, they are only namespaced // functions that you can call with dot syntax. const Suit = enum { clubs, spades, diamonds, hearts, pub fn isClubs(self: Suit) bool { return self == Suit.clubs; } }; test "enum method" { const p = Suit.spades; try expect(!p.isClubs()); } // An enum variant of different types can be switched upon. const Foo = enum { string, number, none, }; test "enum variant switch" { const p = Foo.number; const what_is_it = switch (p) { Foo.string => "this is a string", Foo.number => "this is a number", Foo.none => "this is a none", }; try expect(mem.eql(u8, what_is_it, "this is a number")); } // @typeInfo can be used to access the integer tag type of an enum. const Small = enum { one, two, three, four, }; test "std.meta.Tag" { try expect(@typeInfo(Small).Enum.tag_type == u2); } // @typeInfo tells us the field count and the fields names: test "@typeInfo" { try expect(@typeInfo(Small).Enum.fields.len == 4); try expect(mem.eql(u8, @typeInfo(Small).Enum.fields[1].name, "two")); } // @tagName gives a [:0]const u8 representation of an enum value: test "@tagName" { try expect(mem.eql(u8, @tagName(Small.three), "three")); }
$ zig test enums.zig 1/7 test "enum ordinal value"... OK 2/7 test "set enum ordinal value"... OK 3/7 test "enum method"... OK 4/7 test "enum variant switch"... OK 5/7 test "std.meta.Tag"... OK 6/7 test "@typeInfo"... OK 7/7 test "@tagName"... OK All 7 tests passed.
See also:
By default, enums are not guaranteed to be compatible with the C ABI:
const Foo = enum { a, b, c }; export fn entry(foo: Foo) void { _ = foo; }
$ zig build-obj test.zig ./docgen_tmp/test.zig:2:22: error: parameter of type 'Foo' not allowed in function with calling convention 'C' export fn entry(foo: Foo) void { _ = foo; } ^
For a C-ABI-compatible enum, provide an explicit tag type to the enum:
const Foo = enum(c_int) { a, b, c }; export fn entry(foo: Foo) void { _ = foo; }
$ zig build-obj test.zig
Enum literals allow specifying the name of an enum field without specifying the enum type:
const std = @import("std"); const expect = std.testing.expect; const Color = enum { auto, off, on, }; test "enum literals" { const color1: Color = .auto; const color2 = Color.auto; try expect(color1 == color2); } test "switch using enum literals" { const color = Color.on; const result = switch (color) { .auto => false, .on => true, .off => false, }; try expect(result); }
$ zig test test_enum_literals.zig 1/2 test "enum literals"... OK 2/2 test "switch using enum literals"... OK All 2 tests passed.
A Non-exhaustive enum can be created by adding a trailing '_' field. It must specify a tag type and cannot consume every enumeration value.
@intToEnum on a non-exhaustive enum involves the safety semantics of @intCast to the integer tag type, but beyond that always results in a well-defined enum value.
A switch on a non-exhaustive enum can include a '_' prong as an alternative to an else
prong with the difference being that it makes it a compile error if all the known tag names are not handled by the switch.
const std = @import("std"); const expect = std.testing.expect; const Number = enum(u8) { one, two, three, _, }; test "switch on non-exhaustive enum" { const number = Number.one; const result = switch (number) { .one => true, .two, .three => false, _ => false, }; try expect(result); const is_one = switch (number) { .one => true, else => false, }; try expect(is_one); }
$ zig test test_switch_non-exhaustive.zig 1/1 test "switch on non-exhaustive enum"... OK All 1 tests passed.
A bare union
defines a set of possible types that a value can be as a list of fields. Only one field can be active at a time. The in-memory representation of bare unions is not guaranteed. Bare unions cannot be used to reinterpret memory. For that, use @ptrCast, or use an extern union or a packed union which have guaranteed in-memory layout. Accessing the non-active field is safety-checked Undefined Behavior:
const Payload = union { int: i64, float: f64, boolean: bool, }; test "simple union" { var payload = Payload{ .int = 1234 }; payload.float = 12.34; }
$ zig test test.zig 1/1 test "simple union"... thread 793111 panic: access of inactive union field /home/andy/Downloads/zig/docgen_tmp/test.zig:8:12: 0x207a4b in test "simple union" (test) payload.float = 12.34; ^ /home/andy/Downloads/zig/lib/std/special/test_runner.zig:80:28: 0x22f453 in std.special.main (test) } else test_fn.func(); ^ /home/andy/Downloads/zig/lib/std/start.zig:543:22: 0x227e4c in std.start.callMain (test) root.main(); ^ /home/andy/Downloads/zig/lib/std/start.zig:495:12: 0x20926e in std.start.callMainWithArgs (test) return @call(.{ .modifier = .always_inline }, callMain, .{}); ^ /home/andy/Downloads/zig/lib/std/start.zig:409:17: 0x208306 in std.start.posixCallMainAndExit (test) std.os.exit(@call(.{ .modifier = .always_inline }, callMainWithArgs, .{ argc, argv, envp })); ^ /home/andy/Downloads/zig/lib/std/start.zig:322:5: 0x208112 in std.start._start (test) @call(.{ .modifier = .never_inline }, posixCallMainAndExit, .{}); ^ error: the following test command crashed: docgen_tmp/zig-cache/o/8e4964e05ddaf866e77360a551b3c05b/test /home/andy/Downloads/zig/build-release/zig
You can activate another field by assigning the entire union:
const std = @import("std"); const expect = std.testing.expect; const Payload = union { int: i64, float: f64, boolean: bool, }; test "simple union" { var payload = Payload{ .int = 1234 }; try expect(payload.int == 1234); payload = Payload{ .float = 12.34 }; try expect(payload.float == 12.34); }
$ zig test test_simple_union.zig 1/1 test "simple union"... OK All 1 tests passed.
In order to use switch with a union, it must be a Tagged union.
To initialize a union when the tag is a comptime-known name, see @unionInit.
Unions can be declared with an enum tag type. This turns the union into a tagged union, which makes it eligible to use with switch expressions. Tagged unions coerce to their tag type: Type Coercion: unions and enums.
const std = @import("std"); const expect = std.testing.expect; const ComplexTypeTag = enum { ok, not_ok, }; const ComplexType = union(ComplexTypeTag) { ok: u8, not_ok: void, }; test "switch on tagged union" { const c = ComplexType{ .ok = 42 }; try expect(@as(ComplexTypeTag, c) == ComplexTypeTag.ok); switch (c) { ComplexTypeTag.ok => |value| try expect(value == 42), ComplexTypeTag.not_ok => unreachable, } } test "get tag type" { try expect(std.meta.Tag(ComplexType) == ComplexTypeTag); } test "coerce to enum" { const c1 = ComplexType{ .ok = 42 }; const c2 = ComplexType.not_ok; try expect(c1 == .ok); try expect(c2 == .not_ok); }
$ zig test test_switch_tagged_union.zig 1/3 test "switch on tagged union"... OK 2/3 test "get tag type"... OK 3/3 test "coerce to enum"... OK All 3 tests passed.
In order to modify the payload of a tagged union in a switch expression, place a *
before the variable name to make it a pointer:
const std = @import("std"); const expect = std.testing.expect; const ComplexTypeTag = enum { ok, not_ok, }; const ComplexType = union(ComplexTypeTag) { ok: u8, not_ok: void, }; test "modify tagged union in switch" { var c = ComplexType{ .ok = 42 }; try expect(@as(ComplexTypeTag, c) == ComplexTypeTag.ok); switch (c) { ComplexTypeTag.ok => |*value| value.* += 1, ComplexTypeTag.not_ok => unreachable, } try expect(c.ok == 43); }
$ zig test test_switch_modify_tagged_union.zig 1/1 test "modify tagged union in switch"... OK All 1 tests passed.
Unions can be made to infer the enum tag type. Further, unions can have methods just like structs and enums.
const std = @import("std"); const expect = std.testing.expect; const Variant = union(enum) { int: i32, boolean: bool, // void can be omitted when inferring enum tag type. none, fn truthy(self: Variant) bool { return switch (self) { Variant.int => |x_int| x_int != 0, Variant.boolean => |x_bool| x_bool, Variant.none => false, }; } }; test "union method" { var v1 = Variant{ .int = 1 }; var v2 = Variant{ .boolean = false }; try expect(v1.truthy()); try expect(!v2.truthy()); }
$ zig test test_union_method.zig 1/1 test "union method"... OK All 1 tests passed.
@tagName can be used to return a comptime [:0]const u8
value representing the field name:
const std = @import("std"); const expect = std.testing.expect; const Small2 = union(enum) { a: i32, b: bool, c: u8, }; test "@tagName" { try expect(std.mem.eql(u8, @tagName(Small2.a), "a")); }
$ zig test test_tagName.zig 1/1 test "@tagName"... OK All 1 tests passed.
An extern union
has memory layout guaranteed to be compatible with the target C ABI.
See also:
A packed union
has well-defined in-memory layout and is eligible to be in a packed struct.
Anonymous Struct Literals syntax can be used to initialize unions without specifying the type:
const std = @import("std"); const expect = std.testing.expect; const Number = union { int: i32, float: f64, }; test "anonymous union literal syntax" { var i: Number = .{.int = 42}; var f = makeNumber(); try expect(i.int == 42); try expect(f.float == 12.34); } fn makeNumber() Number { return .{.float = 12.34}; }
$ zig test anon_union.zig 1/1 test "anonymous union literal syntax"... OK All 1 tests passed.
opaque {}
declares a new type with an unknown (but non-zero) size and alignment. It can contain declarations the same as structs, unions, and enums.
This is typically used for type safety when interacting with C code that does not expose struct details. Example:
const Derp = opaque {}; const Wat = opaque {}; extern fn bar(d: *Derp) void; fn foo(w: *Wat) callconv(.C) void { bar(w); } test "call foo" { foo(undefined); }
$ zig test test.zig ./docgen_tmp/test.zig:6:9: error: expected type '*Derp', found '*Wat' bar(w); ^ ./docgen_tmp/test.zig:6:9: note: pointer type child 'Wat' cannot cast into pointer type child 'Derp' bar(w); ^
Blocks are used to limit the scope of variable declarations:
test "access variable after block scope" { { var x: i32 = 1; _ = x; } x += 1; }
$ zig test test.zig docgen_tmp/test.zig:6:5: error: use of undeclared identifier 'x' x += 1; ^
Blocks are expressions. When labeled, break
can be used to return a value from the block:
const std = @import("std"); const expect = std.testing.expect; test "labeled break from labeled block expression" { var y: i32 = 123; const x = blk: { y += 1; break :blk y; }; try expect(x == 124); try expect(y == 124); }
$ zig test test_labeled_break.zig 1/1 test "labeled break from labeled block expression"... OK All 1 tests passed.
Here, blk
can be any name.
See also:
Identifiers are never allowed to "hide" other identifiers by using the same name:
const pi = 3.14; test "inside test block" { // Let's even go inside another block { var pi: i32 = 1234; } }
$ zig test test.zig docgen_tmp/test.zig:6:13: error: local shadows declaration of 'pi' var pi: i32 = 1234; ^ docgen_tmp/test.zig:1:1: note: declared here const pi = 3.14; ^
Because of this, when you read Zig code you can always rely on an identifier to consistently mean the same thing within the scope it is defined. Note that you can, however, use the same name if the scopes are separate:
test "separate scopes" { { const pi = 3.14; _ = pi; } { var pi: bool = true; _ = pi; } }
$ zig test test_scopes.zig 1/1 test "separate scopes"... OK All 1 tests passed.
const std = @import("std"); const builtin = @import("builtin"); const expect = std.testing.expect; test "switch simple" { const a: u64 = 10; const zz: u64 = 103; // All branches of a switch expression must be able to be coerced to a // common type. // // Branches cannot fallthrough. If fallthrough behavior is desired, combine // the cases and use an if. const b = switch (a) { // Multiple cases can be combined via a ',' 1, 2, 3 => 0, // Ranges can be specified using the ... syntax. These are inclusive // both ends. 5...100 => 1, // Branches can be arbitrarily complex. 101 => blk: { const c: u64 = 5; break :blk c * 2 + 1; }, // Switching on arbitrary expressions is allowed as long as the // expression is known at compile-time. zz => zz, blk: { const d: u32 = 5; const e: u32 = 100; break :blk d + e; } => 107, // The else branch catches everything not already captured. // Else branches are mandatory unless the entire range of values // is handled. else => 9, }; try expect(b == 1); } // Switch expressions can be used outside a function: const os_msg = switch (builtin.target.os.tag) { .linux => "we found a linux user", else => "not a linux user", }; // Inside a function, switch statements implicitly are compile-time // evaluated if the target expression is compile-time known. test "switch inside function" { switch (builtin.target.os.tag) { .fuchsia => { // On an OS other than fuchsia, block is not even analyzed, // so this compile error is not triggered. // On fuchsia this compile error would be triggered. @compileError("fuchsia not supported"); }, else => {}, } }
$ zig test switch.zig 1/2 test "switch simple"... OK 2/2 test "switch inside function"... OK All 2 tests passed.
switch
can be used to capture the field values of a Tagged union. Modifications to the field values can be done by placing a *
before the capture variable name, turning it into a pointer.
const expect = @import("std").testing.expect; test "switch on tagged union" { const Point = struct { x: u8, y: u8, }; const Item = union(enum) { a: u32, c: Point, d, e: u32, }; var a = Item{ .c = Point{ .x = 1, .y = 2 } }; // Switching on more complex enums is allowed. const b = switch (a) { // A capture group is allowed on a match, and will return the enum // value matched. If the payload types of both cases are the same // they can be put into the same switch prong. Item.a, Item.e => |item| item, // A reference to the matched value can be obtained using `*` syntax. Item.c => |*item| blk: { item.*.x += 1; break :blk 6; }, // No else is required if the types cases was exhaustively handled Item.d => 8, }; try expect(b == 6); try expect(a.c.x == 2); }
$ zig test test_switch_tagged_union.zig 1/1 test "switch on tagged union"... OK All 1 tests passed.
See also:
When a switch
expression does not have an else
clause, it must exhaustively list all the possible values. Failure to do so is a compile error:
const Color = enum { auto, off, on, }; test "exhaustive switching" { const color = Color.off; switch (color) { Color.auto => {}, Color.on => {}, } }
$ zig test test.zig ./docgen_tmp/test.zig:9:5: error: enumeration value 'Color.off' not handled in switch switch (color) { ^ ./docgen_tmp/test.zig:7:29: note: referenced here test "exhaustive switching" { ^
Enum Literals can be useful to use with switch
to avoid repetitively specifying enum or union types:
const std = @import("std"); const expect = std.testing.expect; const Color = enum { auto, off, on, }; test "enum literals with switch" { const color = Color.off; const result = switch (color) { .auto => false, .on => false, .off => true, }; try expect(result); }
$ zig test test_exhaustive_switch.zig 1/1 test "enum literals with switch"... OK All 1 tests passed.
A while loop is used to repeatedly execute an expression until some condition is no longer true.
const expect = @import("std").testing.expect; test "while basic" { var i: usize = 0; while (i < 10) { i += 1; } try expect(i == 10); }
$ zig test while.zig 1/1 test "while basic"... OK All 1 tests passed.
Use break
to exit a while loop early.
const expect = @import("std").testing.expect; test "while break" { var i: usize = 0; while (true) { if (i == 10) break; i += 1; } try expect(i == 10); }
$ zig test while.zig 1/1 test "while break"... OK All 1 tests passed.
Use continue
to jump back to the beginning of the loop.
const expect = @import("std").testing.expect; test "while continue" { var i: usize = 0; while (true) { i += 1; if (i < 10) continue; break; } try expect(i == 10); }
$ zig test while.zig 1/1 test "while continue"... OK All 1 tests passed.
While loops support a continue expression which is executed when the loop is continued. The continue
keyword respects this expression.
const expect = @import("std").testing.expect; test "while loop continue expression" { var i: usize = 0; while (i < 10) : (i += 1) {} try expect(i == 10); } test "while loop continue expression, more complicated" { var i: usize = 1; var j: usize = 1; while (i * j < 2000) : ({ i *= 2; j *= 3; }) { const my_ij = i * j; try expect(my_ij < 2000); } }
$ zig test while.zig 1/2 test "while loop continue expression"... OK 2/2 test "while loop continue expression, more complicated"... OK All 2 tests passed.
While loops are expressions. The result of the expression is the result of the else
clause of a while loop, which is executed when the condition of the while loop is tested as false.
break
, like return
, accepts a value parameter. This is the result of the while
expression. When you break
from a while loop, the else
branch is not evaluated.
const expect = @import("std").testing.expect; test "while else" { try expect(rangeHasNumber(0, 10, 5)); try expect(!rangeHasNumber(0, 10, 15)); } fn rangeHasNumber(begin: usize, end: usize, number: usize) bool { var i = begin; return while (i < end) : (i += 1) { if (i == number) { break true; } } else false; }
$ zig test while.zig 1/1 test "while else"... OK All 1 tests passed.
When a while
loop is labeled, it can be referenced from a break
or continue
from within a nested loop:
test "nested break" { outer: while (true) { while (true) { break :outer; } } } test "nested continue" { var i: usize = 0; outer: while (i < 10) : (i += 1) { while (true) { continue :outer; } } }
$ zig test test_nested_break.zig 1/2 test "nested break"... OK 2/2 test "nested continue"... OK All 2 tests passed.
Just like if expressions, while loops can take an optional as the condition and capture the payload. When null is encountered the loop exits.
When the |x|
syntax is present on a while
expression, the while condition must have an Optional Type.
The else
branch is allowed on optional iteration. In this case, it will be executed on the first null value encountered.
const expect = @import("std").testing.expect; test "while null capture" { var sum1: u32 = 0; numbers_left = 3; while (eventuallyNullSequence()) |value| { sum1 += value; } try expect(sum1 == 3); var sum2: u32 = 0; numbers_left = 3; while (eventuallyNullSequence()) |value| { sum2 += value; } else { try expect(sum2 == 3); } } var numbers_left: u32 = undefined; fn eventuallyNullSequence() ?u32 { return if (numbers_left == 0) null else blk: { numbers_left -= 1; break :blk numbers_left; }; }
$ zig test while.zig 1/1 test "while null capture"... OK All 1 tests passed.
Just like if expressions, while loops can take an error union as the condition and capture the payload or the error code. When the condition results in an error code the else branch is evaluated and the loop is finished.
When the else |x|
syntax is present on a while
expression, the while condition must have an Error Union Type.
const expect = @import("std").testing.expect; test "while error union capture" { var sum1: u32 = 0; numbers_left = 3; while (eventuallyErrorSequence()) |value| { sum1 += value; } else |err| { try expect(err == error.ReachedZero); } } var numbers_left: u32 = undefined; fn eventuallyErrorSequence() anyerror!u32 { return if (numbers_left == 0) error.ReachedZero else blk: { numbers_left -= 1; break :blk numbers_left; }; }
$ zig test while.zig 1/1 test "while error union capture"... OK All 1 tests passed.
While loops can be inlined. This causes the loop to be unrolled, which allows the code to do some things which only work at compile time, such as use types as first class values.
const expect = @import("std").testing.expect; test "inline while loop" { comptime var i = 0; var sum: usize = 0; inline while (i < 3) : (i += 1) { const T = switch (i) { 0 => f32, 1 => i8, 2 => bool, else => unreachable, }; sum += typeNameLength(T); } try expect(sum == 9); } fn typeNameLength(comptime T: type) usize { return @typeName(T).len; }
$ zig test test_inline_while.zig 1/1 test "inline while loop"... OK All 1 tests passed.
It is recommended to use inline
loops only for one of these reasons:
See also:
const expect = @import("std").testing.expect; test "for basics" { const items = [_]i32 { 4, 5, 3, 4, 0 }; var sum: i32 = 0; // For loops iterate over slices and arrays. for (items) |value| { // Break and continue are supported. if (value == 0) { continue; } sum += value; } try expect(sum == 16); // To iterate over a portion of a slice, reslice. for (items[0..1]) |value| { sum += value; } try expect(sum == 20); // To access the index of iteration, specify a second capture value. // This is zero-indexed. var sum2: i32 = 0; for (items) |_, i| { try expect(@TypeOf(i) == usize); sum2 += @intCast(i32, i); } try expect(sum2 == 10); } test "for reference" { var items = [_]i32 { 3, 4, 2 }; // Iterate over the slice by reference by // specifying that the capture value is a pointer. for (items) |*value| { value.* += 1; } try expect(items[0] == 4); try expect(items[1] == 5); try expect(items[2] == 3); } test "for else" { // For allows an else attached to it, the same as a while loop. var items = [_]?i32 { 3, 4, null, 5 }; // For loops can also be used as expressions. // Similar to while loops, when you break from a for loop, the else branch is not evaluated. var sum: i32 = 0; const result = for (items) |value| { if (value != null) { sum += value.?; } } else blk: { try expect(sum == 12); break :blk sum; }; try expect(result == 12); }
$ zig test for.zig 1/3 test "for basics"... OK 2/3 test "for reference"... OK 3/3 test "for else"... OK All 3 tests passed.
When a for
loop is labeled, it can be referenced from a break
or continue
from within a nested loop:
const std = @import("std"); const expect = std.testing.expect; test "nested break" { var count: usize = 0; outer: for ([_]i32{ 1, 2, 3, 4, 5 }) |_| { for ([_]i32{ 1, 2, 3, 4, 5 }) |_| { count += 1; break :outer; } } try expect(count == 1); } test "nested continue" { var count: usize = 0; outer: for ([_]i32{ 1, 2, 3, 4, 5, 6, 7, 8 }) |_| { for ([_]i32{ 1, 2, 3, 4, 5 }) |_| { count += 1; continue :outer; } } try expect(count == 8); }
$ zig test test_nested_break.zig 1/2 test "nested break"... OK 2/2 test "nested continue"... OK All 2 tests passed.
For loops can be inlined. This causes the loop to be unrolled, which allows the code to do some things which only work at compile time, such as use types as first class values. The capture value and iterator value of inlined for loops are compile-time known.
const expect = @import("std").testing.expect; test "inline for loop" { const nums = [_]i32{2, 4, 6}; var sum: usize = 0; inline for (nums) |i| { const T = switch (i) { 2 => f32, 4 => i8, 6 => bool, else => unreachable, }; sum += typeNameLength(T); } try expect(sum == 9); } fn typeNameLength(comptime T: type) usize { return @typeName(T).len; }
$ zig test test_inline_loop.zig 1/1 test "inline for loop"... OK All 1 tests passed.
It is recommended to use inline
loops only for one of these reasons:
See also:
// If expressions have three uses, corresponding to the three types: // * bool // * ?T // * anyerror!T const expect = @import("std").testing.expect; test "if expression" { // If expressions are used instead of a ternary expression. const a: u32 = 5; const b: u32 = 4; const result = if (a != b) 47 else 3089; try expect(result == 47); } test "if boolean" { // If expressions test boolean conditions. const a: u32 = 5; const b: u32 = 4; if (a != b) { try expect(true); } else if (a == 9) { unreachable; } else { unreachable; } } test "if optional" { // If expressions test for null. const a: ?u32 = 0; if (a) |value| { try expect(value == 0); } else { unreachable; } const b: ?u32 = null; if (b) |_| { unreachable; } else { try expect(true); } // The else is not required. if (a) |value| { try expect(value == 0); } // To test against null only, use the binary equality operator. if (b == null) { try expect(true); } // Access the value by reference using a pointer capture. var c: ?u32 = 3; if (c) |*value| { value.* = 2; } if (c) |value| { try expect(value == 2); } else { unreachable; } } test "if error union" { // If expressions test for errors. // Note the |err| capture on the else. const a: anyerror!u32 = 0; if (a) |value| { try expect(value == 0); } else |err| { _ = err; unreachable; } const b: anyerror!u32 = error.BadValue; if (b) |value| { _ = value; unreachable; } else |err| { try expect(err == error.BadValue); } // The else and |err| capture is strictly required. if (a) |value| { try expect(value == 0); } else |_| {} // To check only the error value, use an empty block expression. if (b) |_| {} else |err| { try expect(err == error.BadValue); } // Access the value by reference using a pointer capture. var c: anyerror!u32 = 3; if (c) |*value| { value.* = 9; } else |_| { unreachable; } if (c) |value| { try expect(value == 9); } else |_| { unreachable; } } test "if error union with optional" { // If expressions test for errors before unwrapping optionals. // The |optional_value| capture's type is ?u32. const a: anyerror!?u32 = 0; if (a) |optional_value| { try expect(optional_value.? == 0); } else |err| { _ = err; unreachable; } const b: anyerror!?u32 = null; if (b) |optional_value| { try expect(optional_value == null); } else |_| { unreachable; } const c: anyerror!?u32 = error.BadValue; if (c) |optional_value| { _ = optional_value; unreachable; } else |err| { try expect(err == error.BadValue); } // Access the value by reference by using a pointer capture each time. var d: anyerror!?u32 = 3; if (d) |*optional_value| { if (optional_value.*) |*value| { value.* = 9; } } else |_| { unreachable; } if (d) |optional_value| { try expect(optional_value.? == 9); } else |_| { unreachable; } }
$ zig test if.zig 1/5 test "if expression"... OK 2/5 test "if boolean"... OK 3/5 test "if optional"... OK 4/5 test "if error union"... OK 5/5 test "if error union with optional"... OK All 5 tests passed.
See also:
const std = @import("std"); const expect = std.testing.expect; const print = std.debug.print; // defer will execute an expression at the end of the current scope. fn deferExample() !usize { var a: usize = 1; { defer a = 2; a = 1; } try expect(a == 2); a = 5; return a; } test "defer basics" { try expect((try deferExample()) == 5); } // If multiple defer statements are specified, they will be executed in // the reverse order they were run. fn deferUnwindExample() void { print("\n", .{}); defer { print("1 ", .{}); } defer { print("2 ", .{}); } if (false) { // defers are not run if they are never executed. defer { print("3 ", .{}); } } } test "defer unwinding" { deferUnwindExample(); } // The errdefer keyword is similar to defer, but will only execute if the // scope returns with an error. // // This is especially useful in allowing a function to clean up properly // on error, and replaces goto error handling tactics as seen in c. fn deferErrorExample(is_error: bool) !void { print("\nstart of function\n", .{}); // This will always be executed on exit defer { print("end of function\n", .{}); } errdefer { print("encountered an error!\n", .{}); } if (is_error) { return error.DeferError; } } test "errdefer unwinding" { deferErrorExample(false) catch {}; deferErrorExample(true) catch {}; }
$ zig test defer.zig 1/3 test "defer basics"... OK 2/3 test "defer unwinding"... 2 1 OK 3/3 test "errdefer unwinding"... start of function end of function start of function encountered an error! end of function OK All 3 tests passed.
See also:
In Debug
and ReleaseSafe
mode, and when using zig test, unreachable
emits a call to panic
with the message reached unreachable code
.
In ReleaseFast
mode, the optimizer uses the assumption that unreachable
code will never be hit to perform optimizations. However, zig test even in ReleaseFast
mode still emits unreachable
as calls to panic
.
// unreachable is used to assert that control flow will never happen upon a // particular location: test "basic math" { const x = 1; const y = 2; if (x + y != 3) { unreachable; } }
$ zig test test_unreachable.zig 1/1 test "basic math"... OK All 1 tests passed.
In fact, this is how std.debug.assert
is implemented:
// This is how std.debug.assert is implemented fn assert(ok: bool) void { if (!ok) unreachable; // assertion failure } // This test will fail because we hit unreachable. test "this will fail" { assert(false); }
$ zig test test.zig 1/1 test "this will fail"... thread 794145 panic: reached unreachable code /home/andy/Downloads/zig/docgen_tmp/test.zig:3:14: 0x207f3b in assert (test) if (!ok) unreachable; // assertion failure ^ /home/andy/Downloads/zig/docgen_tmp/test.zig:8:11: 0x2079ce in test "this will fail" (test) assert(false); ^ /home/andy/Downloads/zig/lib/std/special/test_runner.zig:80:28: 0x22f423 in std.special.main (test) } else test_fn.func(); ^ /home/andy/Downloads/zig/lib/std/start.zig:543:22: 0x227e1c in std.start.callMain (test) root.main(); ^ /home/andy/Downloads/zig/lib/std/start.zig:495:12: 0x20923e in std.start.callMainWithArgs (test) return @call(.{ .modifier = .always_inline }, callMain, .{}); ^ /home/andy/Downloads/zig/lib/std/start.zig:409:17: 0x2082d6 in std.start.posixCallMainAndExit (test) std.os.exit(@call(.{ .modifier = .always_inline }, callMainWithArgs, .{ argc, argv, envp })); ^ /home/andy/Downloads/zig/lib/std/start.zig:322:5: 0x2080e2 in std.start._start (test) @call(.{ .modifier = .never_inline }, posixCallMainAndExit, .{}); ^ error: the following test command crashed: docgen_tmp/zig-cache/o/8e4964e05ddaf866e77360a551b3c05b/test /home/andy/Downloads/zig/build-release/zig
const assert = @import("std").debug.assert; test "type of unreachable" { comptime { // The type of unreachable is noreturn. // However this assertion will still fail to compile because // unreachable expressions are compile errors. assert(@TypeOf(unreachable) == noreturn); } }
$ zig test test.zig docgen_tmp/test.zig:10:16: error: unreachable code assert(@TypeOf(unreachable) == noreturn); ^ docgen_tmp/test.zig:10:24: note: control flow is diverted here assert(@TypeOf(unreachable) == noreturn); ^
See also:
noreturn
is the type of:
break
continue
return
unreachable
while (true) {}
When resolving types together, such as if
clauses or switch
prongs, the noreturn
type is compatible with every other type. Consider:
fn foo(condition: bool, b: u32) void { const a = if (condition) b else return; _ = a; @panic("do something with a"); } test "noreturn" { foo(false, 1); }
$ zig test test_noreturn.zig 1/1 test "noreturn"... OK All 1 tests passed.
Another use case for noreturn
is the exit
function:
const std = @import("std"); const builtin = @import("builtin"); const native_arch = builtin.cpu.arch; const expect = std.testing.expect; const WINAPI: std.builtin.CallingConvention = if (native_arch == .i386) .Stdcall else .C; extern "kernel32" fn ExitProcess(exit_code: c_uint) callconv(WINAPI) noreturn; test "foo" { const value = bar() catch ExitProcess(1); try expect(value == 1234); } fn bar() anyerror!u32 { return 1234; }
$ zig test noreturn_from_exit.zig -target x86_64-windows --test-no-exec
const std = @import("std"); const builtin = @import("builtin"); const native_arch = builtin.cpu.arch; const expect = std.testing.expect; // Functions are declared like this fn add(a: i8, b: i8) i8 { if (a == 0) { return b; } return a + b; } // The export specifier makes a function externally visible in the generated // object file, and makes it use the C ABI. export fn sub(a: i8, b: i8) i8 { return a - b; } // The extern specifier is used to declare a function that will be resolved // at link time, when linking statically, or at runtime, when linking // dynamically. // The callconv specifier changes the calling convention of the function. const WINAPI: std.builtin.CallingConvention = if (native_arch == .i386) .Stdcall else .C; extern "kernel32" fn ExitProcess(exit_code: u32) callconv(WINAPI) noreturn; extern "c" fn atan2(a: f64, b: f64) f64; // The @setCold builtin tells the optimizer that a function is rarely called. fn abort() noreturn { @setCold(true); while (true) {} } // The naked calling convention makes a function not have any function prologue or epilogue. // This can be useful when integrating with assembly. fn _start() callconv(.Naked) noreturn { abort(); } // The inline calling convention forces a function to be inlined at all call sites. // If the function cannot be inlined, it is a compile-time error. fn shiftLeftOne(a: u32) callconv(.Inline) u32 { return a << 1; } // The pub specifier allows the function to be visible when importing. // Another file can use @import and call sub2 pub fn sub2(a: i8, b: i8) i8 { return a - b; } // Functions can be used as values and are equivalent to pointers. const call2_op = fn (a: i8, b: i8) i8; fn do_op(fn_call: call2_op, op1: i8, op2: i8) i8 { return fn_call(op1, op2); } test "function" { try expect(do_op(add, 5, 6) == 11); try expect(do_op(sub2, 5, 6) == -1); }
$ zig test functions.zig 1/1 test "function"... OK All 1 tests passed.
Function values are like pointers:
const assert = @import("std").debug.assert; comptime { assert(@TypeOf(foo) == fn()void); assert(@sizeOf(fn()void) == @sizeOf(?fn()void)); } fn foo() void { }
$ zig build-obj test.zig
Primitive types such as Integers and Floats passed as parameters are copied, and then the copy is available in the function body. This is called "passing by value". Copying a primitive type is essentially free and typically involves nothing more than setting a register.
Structs, unions, and arrays can sometimes be more efficiently passed as a reference, since a copy could be arbitrarily expensive depending on the size. When these types are passed as parameters, Zig may choose to copy and pass by value, or pass by reference, whichever way Zig decides will be faster. This is made possible, in part, by the fact that parameters are immutable.
const Point = struct { x: i32, y: i32, }; fn foo(point: Point) i32 { // Here, `point` could be a reference, or a copy. The function body // can ignore the difference and treat it as a value. Be very careful // taking the address of the parameter - it should be treated as if // the address will become invalid when the function returns. return point.x + point.y; } const expect = @import("std").testing.expect; test "pass struct to function" { try expect(foo(Point{ .x = 1, .y = 2 }) == 3); }
$ zig test pass_by_reference_or_value.zig 1/1 test "pass struct to function"... OK All 1 tests passed.
For extern functions, Zig follows the C ABI for passing structs and unions by value.
Function parameters can be declared with anytype
in place of the type. In this case the parameter types will be inferred when the function is called. Use @TypeOf and @typeInfo to get information about the inferred type.
const expect = @import("std").testing.expect; fn addFortyTwo(x: anytype) @TypeOf(x) { return x + 42; } test "fn type inference" { try expect(addFortyTwo(1) == 43); try expect(@TypeOf(addFortyTwo(1)) == comptime_int); var y: i64 = 2; try expect(addFortyTwo(y) == 44); try expect(@TypeOf(addFortyTwo(y)) == i64); }
$ zig test test_fn_type_inference.zig 1/1 test "fn type inference"... OK All 1 tests passed.
const expect = @import("std").testing.expect; test "fn reflection" { try expect(@typeInfo(@TypeOf(expect)).Fn.args[0].arg_type.? == bool); try expect(@typeInfo(@TypeOf(expect)).Fn.is_var_args == false); }
$ zig test test_fn_reflection.zig 1/1 test "fn reflection"... OK All 1 tests passed.
An error set is like an enum. However, each error name across the entire compilation gets assigned an unsigned integer greater than 0. You are allowed to declare the same error name more than once, and if you do, it gets assigned the same integer value.
The number of unique error values across the entire compilation should determine the size of the error set type. However right now it is hard coded to be a u16
. See #768.
You can coerce an error from a subset to a superset:
const std = @import("std"); const FileOpenError = error { AccessDenied, OutOfMemory, FileNotFound, }; const AllocationError = error { OutOfMemory, }; test "coerce subset to superset" { const err = foo(AllocationError.OutOfMemory); try std.testing.expect(err == FileOpenError.OutOfMemory); } fn foo(err: AllocationError) FileOpenError { return err; }
$ zig test coercing_subset_to_superset.zig 1/1 test "coerce subset to superset"... OK All 1 tests passed.
But you cannot coerce an error from a superset to a subset:
const FileOpenError = error { AccessDenied, OutOfMemory, FileNotFound, }; const AllocationError = error { OutOfMemory, }; test "coerce superset to subset" { foo(FileOpenError.OutOfMemory) catch {}; } fn foo(err: FileOpenError) AllocationError { return err; }
$ zig test test.zig ./docgen_tmp/test.zig:16:12: error: expected type 'AllocationError', found 'FileOpenError' return err; ^ ./docgen_tmp/test.zig:2:5: note: 'error.AccessDenied' not a member of destination error set AccessDenied, ^ ./docgen_tmp/test.zig:4:5: note: 'error.FileNotFound' not a member of destination error set FileNotFound, ^
There is a shortcut for declaring an error set with only 1 value, and then getting that value:
const err = error.FileNotFound;
This is equivalent to:
const err = (error {FileNotFound}).FileNotFound;
This becomes useful when using Inferred Error Sets.
anyerror
refers to the global error set. This is the error set that contains all errors in the entire compilation unit. It is a superset of all other error sets and a subset of none of them.
You can coerce any error set to the global one, and you can explicitly cast an error of the global error set to a non-global one. This inserts a language-level assert to make sure the error value is in fact in the destination error set.
The global error set should generally be avoided because it prevents the compiler from knowing what errors are possible at compile-time. Knowing the error set at compile-time is better for generated documentation and helpful error messages, such as forgetting a possible error value in a switch.
An error set type and normal type can be combined with the !
binary operator to form an error union type. You are likely to use an error union type more often than an error set type by itself.
Here is a function to parse a string into a 64-bit integer:
const std = @import("std"); const maxInt = std.math.maxInt; pub fn parseU64(buf: []const u8, radix: u8) !u64 { var x: u64 = 0; for (buf) |c| { const digit = charToDigit(c); if (digit >= radix) { return error.InvalidChar; } // x *= radix if (@mulWithOverflow(u64, x, radix, &x)) { return error.Overflow; } // x += digit if (@addWithOverflow(u64, x, digit, &x)) { return error.Overflow; } } return x; } fn charToDigit(c: u8) u8 { return switch (c) { '0' ... '9' => c - '0', 'A' ... 'Z' => c - 'A' + 10, 'a' ... 'z' => c - 'a' + 10, else => maxInt(u8), }; } test "parse u64" { const result = try parseU64("1234", 10); try std.testing.expect(result == 1234); }
$ zig test error_union_parsing_u64.zig 1/1 test "parse u64"... OK All 1 tests passed.
Notice the return type is !u64
. This means that the function either returns an unsigned 64 bit integer, or an error. We left off the error set to the left of the !
, so the error set is inferred.
Within the function definition, you can see some return statements that return an error, and at the bottom a return statement that returns a u64
. Both types coerce to anyerror!u64
.
What it looks like to use this function varies depending on what you're trying to do. One of the following:
If you want to provide a default value, you can use the catch
binary operator:
const parseU64 = @import("error_union_parsing_u64.zig").parseU64; fn doAThing(str: []u8) void { const number = parseU64(str, 10) catch 13; _ = number; // ... }
In this code, number
will be equal to the successfully parsed string, or a default value of 13. The type of the right hand side of the binary catch
operator must match the unwrapped error union type, or be of type noreturn
.
Let's say you wanted to return the error if you got one, otherwise continue with the function logic:
const parseU64 = @import("error_union_parsing_u64.zig").parseU64; fn doAThing(str: []u8) !void { const number = parseU64(str, 10) catch |err| return err; _ = number; // ... }
There is a shortcut for this. The try
expression:
const parseU64 = @import("error_union_parsing_u64.zig").parseU64; fn doAThing(str: []u8) !void { const number = try parseU64(str, 10); _ = number; // ... }
try
evaluates an error union expression. If it is an error, it returns from the current function with the same error. Otherwise, the expression results in the unwrapped value.
Maybe you know with complete certainty that an expression will never be an error. In this case you can do this:
const number = parseU64("1234", 10) catch unreachable;
Here we know for sure that "1234" will parse successfully. So we put the unreachable
value on the right hand side. unreachable
generates a panic in Debug and ReleaseSafe modes and undefined behavior in ReleaseFast mode. So, while we're debugging the application, if there was a surprise error here, the application would crash appropriately.
Finally, you may want to take a different action for every situation. For that, we combine the if and switch expression:
fn doAThing(str: []u8) void { if (parseU64(str, 10)) |number| { doSomethingWithNumber(number); } else |err| switch (err) { error.Overflow => { // handle overflow... }, // we promise that InvalidChar won't happen (or crash in debug mode if it does) error.InvalidChar => unreachable, } }
The other component to error handling is defer statements. In addition to an unconditional defer, Zig has errdefer
, which evaluates the deferred expression on block exit path if and only if the function returned with an error from the block.
Example:
fn createFoo(param: i32) !Foo { const foo = try tryToAllocateFoo(); // now we have allocated foo. we need to free it if the function fails. // but we want to return it if the function succeeds. errdefer deallocateFoo(foo); const tmp_buf = allocateTmpBuffer() orelse return error.OutOfMemory; // tmp_buf is truly a temporary resource, and we for sure want to clean it up // before this block leaves scope defer deallocateTmpBuffer(tmp_buf); if (param > 1337) return error.InvalidParam; // here the errdefer will not run since we're returning success from the function. // but the defer will run! return foo; }
The neat thing about this is that you get robust error handling without the verbosity and cognitive overhead of trying to make sure every exit path is covered. The deallocation code is always directly following the allocation code.
A couple of other tidbits about error handling:
catch unreachable
and get the added benefit of crashing in Debug and ReleaseSafe modes if your assumption was wrong. See also:
An error union is created with the !
binary operator. You can use compile-time reflection to access the child type of an error union:
const expect = @import("std").testing.expect; test "error union" { var foo: anyerror!i32 = undefined; // Coerce from child type of an error union: foo = 1234; // Coerce from an error set: foo = error.SomeError; // Use compile-time reflection to access the payload type of an error union: comptime try expect(@typeInfo(@TypeOf(foo)).ErrorUnion.payload == i32); // Use compile-time reflection to access the error set type of an error union: comptime try expect(@typeInfo(@TypeOf(foo)).ErrorUnion.error_set == anyerror); }
$ zig test test_error_union.zig 1/1 test "error union"... OK All 1 tests passed.
Use the ||
operator to merge two error sets together. The resulting error set contains the errors of both error sets. Doc comments from the left-hand side override doc comments from the right-hand side. In this example, the doc comments for C.PathNotFound
is A doc comment
.
This is especially useful for functions which return different error sets depending on comptime branches. For example, the Zig standard library uses LinuxFileOpenError || WindowsFileOpenError
for the error set of opening files.
const A = error{ NotDir, /// A doc comment PathNotFound, }; const B = error{ OutOfMemory, /// B doc comment PathNotFound, }; const C = A || B; fn foo() C!void { return error.NotDir; } test "merge error sets" { if (foo()) { @panic("unexpected"); } else |err| switch (err) { error.OutOfMemory => @panic("unexpected"), error.PathNotFound => @panic("unexpected"), error.NotDir => {}, } }
$ zig test test_merging_error_sets.zig 1/1 test "merge error sets"... OK All 1 tests passed.
Because many functions in Zig return a possible error, Zig supports inferring the error set. To infer the error set for a function, prepend the !
operator to the function’s return type, like !T
:
// With an inferred error set pub fn add_inferred(comptime T: type, a: T, b: T) !T { var answer: T = undefined; return if (@addWithOverflow(T, a, b, &answer)) error.Overflow else answer; } // With an explicit error set pub fn add_explicit(comptime T: type, a: T, b: T) Error!T { var answer: T = undefined; return if (@addWithOverflow(T, a, b, &answer)) error.Overflow else answer; } const Error = error { Overflow, }; const std = @import("std"); test "inferred error set" { if (add_inferred(u8, 255, 1)) |_| unreachable else |err| switch (err) { error.Overflow => {}, // ok } }
$ zig test inferred_error_sets.zig 1/1 test "inferred error set"... OK All 1 tests passed.
When a function has an inferred error set, that function becomes generic and thus it becomes trickier to do certain things with it, such as obtain a function pointer, or have an error set that is consistent across different build targets. Additionally, inferred error sets are incompatible with recursion.
In these situations, it is recommended to use an explicit error set. You can generally start with an empty error set and let compile errors guide you toward completing the set.
These limitations may be overcome in a future version of Zig.
Error Return Traces show all the points in the code that an error was returned to the calling function. This makes it practical to use try everywhere and then still be able to know what happened if an error ends up bubbling all the way out of your application.
pub fn main() !void { try foo(12); } fn foo(x: i32) !void { if (x >= 5) { try bar(); } else { try bang2(); } } fn bar() !void { if (baz()) { try quux(); } else |err| switch (err) { error.FileNotFound => try hello(), else => try another(), } } fn baz() !void { try bang1(); } fn quux() !void { try bang2(); } fn hello() !void { try bang2(); } fn another() !void { try bang1(); } fn bang1() !void { return error.FileNotFound; } fn bang2() !void { return error.PermissionDenied; }
$ zig build-exe test.zig $ ./test error: PermissionDenied /home/andy/Downloads/zig/docgen_tmp/test.zig:39:5: 0x234a02 in bang1 (test) return error.FileNotFound; ^ /home/andy/Downloads/zig/docgen_tmp/test.zig:23:5: 0x2348df in baz (test) try bang1(); ^ /home/andy/Downloads/zig/docgen_tmp/test.zig:43:5: 0x2348a2 in bang2 (test) return error.PermissionDenied; ^ /home/andy/Downloads/zig/docgen_tmp/test.zig:31:5: 0x2349cf in hello (test) try bang2(); ^ /home/andy/Downloads/zig/docgen_tmp/test.zig:17:31: 0x23486e in bar (test) error.FileNotFound => try hello(), ^ /home/andy/Downloads/zig/docgen_tmp/test.zig:7:9: 0x23475c in foo (test) try bar(); ^ /home/andy/Downloads/zig/docgen_tmp/test.zig:2:5: 0x22d054 in main (test) try foo(12); ^
Look closely at this example. This is no stack trace.
You can see that the final error bubbled up was PermissionDenied
, but the original error that started this whole thing was FileNotFound
. In the bar
function, the code handles the original error code, and then returns another one, from the switch statement. Error Return Traces make this clear, whereas a stack trace would look like this:
pub fn main() void { foo(12); } fn foo(x: i32) void { if (x >= 5) { bar(); } else { bang2(); } } fn bar() void { if (baz()) { quux(); } else { hello(); } } fn baz() bool { return bang1(); } fn quux() void { bang2(); } fn hello() void { bang2(); } fn bang1() bool { return false; } fn bang2() void { @panic("PermissionDenied"); }
$ zig build-exe test.zig $ ./test thread 794855 panic: PermissionDenied /home/andy/Downloads/zig/docgen_tmp/test.zig:38:5: 0x235876 in bang2 (test) @panic("PermissionDenied"); ^ /home/andy/Downloads/zig/docgen_tmp/test.zig:30:10: 0x235fc8 in hello (test) bang2(); ^ /home/andy/Downloads/zig/docgen_tmp/test.zig:17:14: 0x23585a in bar (test) hello(); ^ /home/andy/Downloads/zig/docgen_tmp/test.zig:7:12: 0x2344d5 in foo (test) bar(); ^ /home/andy/Downloads/zig/docgen_tmp/test.zig:2:8: 0x22ce3d in main (test) foo(12); ^ /home/andy/Downloads/zig/lib/std/start.zig:543:22: 0x225bcc in std.start.callMain (test) root.main(); ^ /home/andy/Downloads/zig/lib/std/start.zig:495:12: 0x206fce in std.start.callMainWithArgs (test) return @call(.{ .modifier = .always_inline }, callMain, .{}); ^ /home/andy/Downloads/zig/lib/std/start.zig:409:17: 0x206066 in std.start.posixCallMainAndExit (test) std.os.exit(@call(.{ .modifier = .always_inline }, callMainWithArgs, .{ argc, argv, envp })); ^ /home/andy/Downloads/zig/lib/std/start.zig:322:5: 0x205e72 in std.start._start (test) @call(.{ .modifier = .never_inline }, posixCallMainAndExit, .{}); ^ (process terminated by signal)
Here, the stack trace does not explain how the control flow in bar
got to the hello()
call. One would have to open a debugger or further instrument the application in order to find out. The error return trace, on the other hand, shows exactly how the error bubbled up.
This debugging feature makes it easier to iterate quickly on code that robustly handles all error conditions. This means that Zig developers will naturally find themselves writing correct, robust code in order to increase their development pace.
Error Return Traces are enabled by default in Debug and ReleaseSafe builds and disabled by default in ReleaseFast and ReleaseSmall builds.
There are a few ways to activate this error return tracing feature:
catch unreachable
and you have not overridden the default panic handlerstd.debug.dumpStackTrace
to print it. This function returns comptime-known null when building without error return tracing support.To analyze performance cost, there are two cases:
For the case when no errors are returned, the cost is a single memory write operation, only in the first non-failable function in the call graph that calls a failable function, i.e. when a function returning void
calls a function returning error
. This is to initialize this struct in the stack memory:
pub const StackTrace = struct { index: usize, instruction_addresses: [N]usize, };
Here, N is the maximum function call depth as determined by call graph analysis. Recursion is ignored and counts for 2.
A pointer to StackTrace
is passed as a secret parameter to every function that can return an error, but it's always the first parameter, so it can likely sit in a register and stay there.
That's it for the path when no errors occur. It's practically free in terms of performance.
When generating the code for a function that returns an error, just before the return
statement (only for the return
statements that return errors), Zig generates a call to this function:
// marked as "no-inline" in LLVM IR fn __zig_return_error(stack_trace: *StackTrace) void { stack_trace.instruction_addresses[stack_trace.index] = @returnAddress(); stack_trace.index = (stack_trace.index + 1) % N; }
The cost is 2 math operations plus some memory reads and writes. The memory accessed is constrained and should remain cached for the duration of the error return bubbling.
As for code size cost, 1 function call before a return statement is no big deal. Even so, I have a plan to make the call to __zig_return_error
a tail call, which brings the code size cost down to actually zero. What is a return statement in code without error return tracing can become a jump instruction in code with error return tracing.
One area that Zig provides safety without compromising efficiency or readability is with the optional type.
The question mark symbolizes the optional type. You can convert a type to an optional type by putting a question mark in front of it, like this:
// normal integer const normal_int: i32 = 1234; // optional integer const optional_int: ?i32 = 5678;
Now the variable optional_int
could be an i32
, or null
.
Instead of integers, let's talk about pointers. Null references are the source of many runtime exceptions, and even stand accused of being the worst mistake of computer science.
Zig does not have them.
Instead, you can use an optional pointer. This secretly compiles down to a normal pointer, since we know we can use 0 as the null value for the optional type. But the compiler can check your work and make sure you don't assign null to something that can't be null.
Typically the downside of not having null is that it makes the code more verbose to write. But, let's compare some equivalent C code and Zig code.
Task: call malloc, if the result is null, return null.
C code
// malloc prototype included for reference void *malloc(size_t size); struct Foo *do_a_thing(void) { char *ptr = malloc(1234); if (!ptr) return NULL; // ... }
Zig code
// malloc prototype included for reference extern fn malloc(size: size_t) ?*u8; fn doAThing() ?*Foo { const ptr = malloc(1234) orelse return null; _ = ptr; // ... }
Here, Zig is at least as convenient, if not more, than C. And, the type of "ptr" is *u8
not ?*u8
. The orelse
keyword unwrapped the optional type and therefore ptr
is guaranteed to be non-null everywhere it is used in the function.
The other form of checking against NULL you might see looks like this:
void do_a_thing(struct Foo *foo) { // do some stuff if (foo) { do_something_with_foo(foo); } // do some stuff }
In Zig you can accomplish the same thing:
const Foo = struct{}; fn doSomethingWithFoo(foo: *Foo) void { _ = foo; } fn doAThing(optional_foo: ?*Foo) void { // do some stuff if (optional_foo) |foo| { doSomethingWithFoo(foo); } // do some stuff }
Once again, the notable thing here is that inside the if block, foo
is no longer an optional pointer, it is a pointer, which cannot be null.
One benefit to this is that functions which take pointers as arguments can be annotated with the "nonnull" attribute - __attribute__((nonnull))
in GCC. The optimizer can sometimes make better decisions knowing that pointer arguments cannot be null.
An optional is created by putting ?
in front of a type. You can use compile-time reflection to access the child type of an optional:
const expect = @import("std").testing.expect; test "optional type" { // Declare an optional and coerce from null: var foo: ?i32 = null; // Coerce from child type of an optional foo = 1234; // Use compile-time reflection to access the child type of the optional: comptime try expect(@typeInfo(@TypeOf(foo)).Optional.child == i32); }
$ zig test test_optional_type.zig 1/1 test "optional type"... OK All 1 tests passed.
Just like undefined, null
has its own type, and the only way to use it is to cast it to a different type:
const optional_value: ?i32 = null;
An optional pointer is guaranteed to be the same size as a pointer. The null
of the optional is guaranteed to be address 0.
const expect = @import("std").testing.expect; test "optional pointers" { // Pointers cannot be null. If you want a null pointer, use the optional // prefix `?` to make the pointer type optional. var ptr: ?*i32 = null; var x: i32 = 1; ptr = &x; try expect(ptr.?.* == 1); // Optional pointers are the same size as normal pointers, because pointer // value 0 is used as the null value. try expect(@sizeOf(?*i32) == @sizeOf(*i32)); }
$ zig test test_optional_pointer.zig 1/1 test "optional pointers"... OK All 1 tests passed.
A type cast converts a value of one type to another. Zig has Type Coercion for conversions that are known to be completely safe and unambiguous, and Explicit Casts for conversions that one would not want to happen on accident. There is also a third kind of type conversion called Peer Type Resolution for the case when a result type must be decided given multiple operand types.
Type coercion occurs when one type is expected, but different type is provided:
test "type coercion - variable declaration" { var a: u8 = 1; var b: u16 = a; _ = b; } test "type coercion - function call" { var a: u8 = 1; foo(a); } fn foo(b: u16) void { _ = b; } test "type coercion - @as builtin" { var a: u8 = 1; var b = @as(u16, a); _ = b; }
$ zig test type_coercion.zig 1/3 test "type coercion - variable declaration"... OK 2/3 test "type coercion - function call"... OK 3/3 test "type coercion - @as builtin"... OK All 3 tests passed.
Type coercions are only allowed when it is completely unambiguous how to get from one type to another, and the transformation is guaranteed to be safe. There is one exception, which is C Pointers.
Values which have the same representation at runtime can be cast to increase the strictness of the qualifiers, no matter how nested the qualifiers are:
const
- non-const to const is allowedvolatile
- non-volatile to volatile is allowedalign
- bigger to smaller alignment is allowed These casts are no-ops at runtime since the value representation does not change.
test "type coercion - const qualification" { var a: i32 = 1; var b: *i32 = &a; foo(b); } fn foo(_: *const i32) void {}
$ zig test no_op_casts.zig 1/1 test "type coercion - const qualification"... OK All 1 tests passed.
In addition, pointers coerce to const optional pointers:
const std = @import("std"); const expect = std.testing.expect; const mem = std.mem; test "cast *[1][*]const u8 to [*]const ?[*]const u8" { const window_name = [1][*]const u8{"window name"}; const x: [*]const ?[*]const u8 = &window_name; try expect(mem.eql(u8, std.mem.sliceTo(@ptrCast([*:0]const u8, x[0].?), 0), "window name")); }
$ zig test pointer_coerce_const_optional.zig 1/1 test "cast *[1][*]const u8 to [*]const ?[*]const u8"... OK All 1 tests passed.
Integers coerce to integer types which can represent every value of the old type, and likewise Floats coerce to float types which can represent every value of the old type.
const std = @import("std"); const builtin = @import("builtin"); const expect = std.testing.expect; const mem = std.mem; test "integer widening" { var a: u8 = 250; var b: u16 = a; var c: u32 = b; var d: u64 = c; var e: u64 = d; var f: u128 = e; try expect(f == a); } test "implicit unsigned integer to signed integer" { var a: u8 = 250; var b: i16 = a; try expect(b == 250); } test "float widening" { // Note: there is an open issue preventing this from working on aarch64: // https://github.com/ziglang/zig/issues/3282 if (builtin.target.cpu.arch == .aarch64) return error.SkipZigTest; var a: f16 = 12.34; var b: f32 = a; var c: f64 = b; var d: f128 = c; try expect(d == a); }
$ zig test test_integer_widening.zig 1/3 test "integer widening"... OK 2/3 test "implicit unsigned integer to signed integer"... OK 3/3 test "float widening"... OK All 3 tests passed.
A compiler error is appropriate because this ambiguous expression leaves the compiler two choices about the coercion.
54.0
to comptime_int
resulting in @as(comptime_int, 10)
, which is casted to @as(f32, 10)
5
to comptime_float
resulting in @as(comptime_float, 10.8)
, which is casted to @as(f32, 10.8)
// Compile time coercion of float to int test "implicit cast to comptime_int" { var f: f32 = 54.0 / 5; _ = f; }
$ zig test test.zig ./docgen_tmp/test.zig:3:18: error: float value 54.000000 cannot be coerced to type 'comptime_int' var f: f32 = 54.0 / 5; ^ ./docgen_tmp/test.zig:3:23: note: referenced here var f: f32 = 54.0 / 5; ^
const std = @import("std"); const expect = std.testing.expect; // You can assign constant pointers to arrays to a slice with // const modifier on the element type. Useful in particular for // String literals. test "*const [N]T to []const T" { var x1: []const u8 = "hello"; var x2: []const u8 = &[5]u8{ 'h', 'e', 'l', 'l', 111 }; try expect(std.mem.eql(u8, x1, x2)); var y: []const f32 = &[2]f32{ 1.2, 3.4 }; try expect(y[0] == 1.2); } // Likewise, it works when the destination type is an error union. test "*const [N]T to E![]const T" { var x1: anyerror![]const u8 = "hello"; var x2: anyerror![]const u8 = &[5]u8{ 'h', 'e', 'l', 'l', 111 }; try expect(std.mem.eql(u8, try x1, try x2)); var y: anyerror![]const f32 = &[2]f32{ 1.2, 3.4 }; try expect((try y)[0] == 1.2); } // Likewise, it works when the destination type is an optional. test "*const [N]T to ?[]const T" { var x1: ?[]const u8 = "hello"; var x2: ?[]const u8 = &[5]u8{ 'h', 'e', 'l', 'l', 111 }; try expect(std.mem.eql(u8, x1.?, x2.?)); var y: ?[]const f32 = &[2]f32{ 1.2, 3.4 }; try expect(y.?[0] == 1.2); } // In this cast, the array length becomes the slice length. test "*[N]T to []T" { var buf: [5]u8 = "hello".*; const x: []u8 = &buf; try expect(std.mem.eql(u8, x, "hello")); const buf2 = [2]f32{ 1.2, 3.4 }; const x2: []const f32 = &buf2; try expect(std.mem.eql(f32, x2, &[2]f32{ 1.2, 3.4 })); } // Single-item pointers to arrays can be coerced to many-item pointers. test "*[N]T to [*]T" { var buf: [5]u8 = "hello".*; const x: [*]u8 = &buf; try expect(x[4] == 'o'); // x[5] would be an uncaught out of bounds pointer dereference! } // Likewise, it works when the destination type is an optional. test "*[N]T to ?[*]T" { var buf: [5]u8 = "hello".*; const x: ?[*]u8 = &buf; try expect(x.?[4] == 'o'); } // Single-item pointers can be cast to len-1 single-item arrays. test "*T to *[1]T" { var x: i32 = 1234; const y: *[1]i32 = &x; const z: [*]i32 = y; try expect(z[0] == 1234); }
$ zig test coerce__slices_arrays_and_ptrs.zig 1/7 test "*const [N]T to []const T"... OK 2/7 test "*const [N]T to E![]const T"... OK 3/7 test "*const [N]T to ?[]const T"... OK 4/7 test "*[N]T to []T"... OK 5/7 test "*[N]T to [*]T"... OK 6/7 test "*[N]T to ?[*]T"... OK 7/7 test "*T to *[1]T"... OK All 7 tests passed.
See also:
The payload type of Optionals, as well as null, coerce to the optional type.
const std = @import("std"); const expect = std.testing.expect; test "coerce to optionals" { const x: ?i32 = 1234; const y: ?i32 = null; try expect(x.? == 1234); try expect(y == null); }
$ zig test test_coerce_optionals.zig 1/1 test "coerce to optionals"... OK All 1 tests passed.
It works nested inside the Error Union Type, too:
const std = @import("std"); const expect = std.testing.expect; test "coerce to optionals wrapped in error union" { const x: anyerror!?i32 = 1234; const y: anyerror!?i32 = null; try expect((try x).? == 1234); try expect((try y) == null); }
$ zig test test_coerce_optional_wrapped_error_union.zig 1/1 test "coerce to optionals wrapped in error union"... OK All 1 tests passed.
The payload type of an Error Union Type as well as the Error Set Type coerce to the error union type:
const std = @import("std"); const expect = std.testing.expect; test "coercion to error unions" { const x: anyerror!i32 = 1234; const y: anyerror!i32 = error.Failure; try expect((try x) == 1234); try std.testing.expectError(error.Failure, y); }
$ zig test test_coerce_to_error_union.zig 1/1 test "coercion to error unions"... OK All 1 tests passed.
When a number is comptime-known to be representable in the destination type, it may be coerced:
const std = @import("std"); const expect = std.testing.expect; test "coercing large integer type to smaller one when value is comptime known to fit" { const x: u64 = 255; const y: u8 = x; try expect(y == 255); }
$ zig test test_coerce_large_to_small.zig 1/1 test "coercing large integer type to smaller one when value is comptime known to fit"... OK All 1 tests passed.
Tagged unions can be coerced to enums, and enums can be coerced to tagged unions when they are comptime-known to be a field of the union that has only one possible value, such as void:
const std = @import("std"); const expect = std.testing.expect; const E = enum { one, two, three, }; const U = union(E) { one: i32, two: f32, three, }; test "coercion between unions and enums" { var u = U{ .two = 12.34 }; var e: E = u; try expect(e == E.two); const three = E.three; var another_u: U = three; try expect(another_u == E.three); }
$ zig test test_coerce_unions_enums.zig 1/1 test "coercion between unions and enums"... OK All 1 tests passed.
See also:
Zero Bit Types may be coerced to single-item Pointers, regardless of const.
TODO document the reasoning for this
TODO document whether vice versa should work and why
test "coercion of zero bit types" { var x: void = {}; var y: *void = x; _ = y; }
$ zig test coerce_zero_bit_types.zig 1/1 test "coercion of zero bit types"... OK All 1 tests passed.
undefined can be cast to any type.
Explicit casts are performed via Builtin Functions. Some explicit casts are safe; some are not. Some explicit casts perform language-level assertions; some do not. Some explicit casts are no-ops at runtime; some are not.
Peer Type Resolution occurs in these places:
This kind of type resolution chooses a type that all peer types can coerce into. Here are some examples:
const std = @import("std"); const expect = std.testing.expect; const mem = std.mem; test "peer resolve int widening" { var a: i8 = 12; var b: i16 = 34; var c = a + b; try expect(c == 46); try expect(@TypeOf(c) == i16); } test "peer resolve arrays of different size to const slice" { try expect(mem.eql(u8, boolToStr(true), "true")); try expect(mem.eql(u8, boolToStr(false), "false")); comptime try expect(mem.eql(u8, boolToStr(true), "true")); comptime try expect(mem.eql(u8, boolToStr(false), "false")); } fn boolToStr(b: bool) []const u8 { return if (b) "true" else "false"; } test "peer resolve array and const slice" { try testPeerResolveArrayConstSlice(true); comptime try testPeerResolveArrayConstSlice(true); } fn testPeerResolveArrayConstSlice(b: bool) !void { const value1 = if (b) "aoeu" else @as([]const u8, "zz"); const value2 = if (b) @as([]const u8, "zz") else "aoeu"; try expect(mem.eql(u8, value1, "aoeu")); try expect(mem.eql(u8, value2, "zz")); } test "peer type resolution: ?T and T" { try expect(peerTypeTAndOptionalT(true, false).? == 0); try expect(peerTypeTAndOptionalT(false, false).? == 3); comptime { try expect(peerTypeTAndOptionalT(true, false).? == 0); try expect(peerTypeTAndOptionalT(false, false).? == 3); } } fn peerTypeTAndOptionalT(c: bool, b: bool) ?usize { if (c) { return if (b) null else @as(usize, 0); } return @as(usize, 3); } test "peer type resolution: *[0]u8 and []const u8" { try expect(peerTypeEmptyArrayAndSlice(true, "hi").len == 0); try expect(peerTypeEmptyArrayAndSlice(false, "hi").len == 1); comptime { try expect(peerTypeEmptyArrayAndSlice(true, "hi").len == 0); try expect(peerTypeEmptyArrayAndSlice(false, "hi").len == 1); } } fn peerTypeEmptyArrayAndSlice(a: bool, slice: []const u8) []const u8 { if (a) { return &[_]u8{}; } return slice[0..1]; } test "peer type resolution: *[0]u8, []const u8, and anyerror![]u8" { { var data = "hi".*; const slice = data[0..]; try expect((try peerTypeEmptyArrayAndSliceAndError(true, slice)).len == 0); try expect((try peerTypeEmptyArrayAndSliceAndError(false, slice)).len == 1); } comptime { var data = "hi".*; const slice = data[0..]; try expect((try peerTypeEmptyArrayAndSliceAndError(true, slice)).len == 0); try expect((try peerTypeEmptyArrayAndSliceAndError(false, slice)).len == 1); } } fn peerTypeEmptyArrayAndSliceAndError(a: bool, slice: []u8) anyerror![]u8 { if (a) { return &[_]u8{}; } return slice[0..1]; } test "peer type resolution: *const T and ?*T" { const a = @intToPtr(*const usize, 0x123456780); const b = @intToPtr(?*usize, 0x123456780); try expect(a == b); try expect(b == a); }
$ zig test peer_type_resolution.zig 1/7 test "peer resolve int widening"... OK 2/7 test "peer resolve arrays of different size to const slice"... OK 3/7 test "peer resolve array and const slice"... OK 4/7 test "peer type resolution: ?T and T"... OK 5/7 test "peer type resolution: *[0]u8 and []const u8"... OK 6/7 test "peer type resolution: *[0]u8, []const u8, and anyerror![]u8"... OK 7/7 test "peer type resolution: *const T and ?*T"... OK All 7 tests passed.
For some types, @sizeOf is 0:
u0
and i0
.These types can only ever have one possible value, and thus require 0 bits to represent. Code that makes use of these types is not included in the final generated code:
export fn entry() void { var x: void = {}; var y: void = {}; x = y; }
When this turns into machine code, there is no code generated in the body of entry
, even in Debug mode. For example, on x86_64:
0000000000000010 <entry>: 10: 55 push %rbp 11: 48 89 e5 mov %rsp,%rbp 14: 5d pop %rbp 15: c3 retq
These assembly instructions do not have any code associated with the void values - they only perform the function call prologue and epilog.
void
can be useful for instantiating generic types. For example, given a Map(Key, Value)
, one can pass void
for the Value
type to make it into a Set
:
const std = @import("std"); const expect = std.testing.expect; test "turn HashMap into a set with void" { var map = std.AutoHashMap(i32, void).init(std.testing.allocator); defer map.deinit(); try map.put(1, {}); try map.put(2, {}); try expect(map.contains(2)); try expect(!map.contains(3)); _ = map.remove(2); try expect(!map.contains(2)); }
$ zig test void_in_hashmap.zig 1/1 test "turn HashMap into a set with void"... OK All 1 tests passed.
Note that this is different from using a dummy value for the hash map value. By using void
as the type of the value, the hash map entry type has no value field, and thus the hash map takes up less space. Further, all the code that deals with storing and loading the value is deleted, as seen above.
void
is distinct from c_void
. void
has a known size of 0 bytes, and c_void
has an unknown, but non-zero, size.
Expressions of type void
are the only ones whose value can be ignored. For example:
test "ignoring expression value" { foo(); } fn foo() i32 { return 1234; }
$ zig test test.zig ./docgen_tmp/test.zig:2:8: error: expression value is ignored foo(); ^ ./docgen_tmp/test.zig:1:34: note: referenced here test "ignoring expression value" { ^
However, if the expression has type void
, there will be no error. Function return values can also be explicitly ignored by assigning them to _
.
test "void is ignored" { returnsVoid(); } test "explicitly ignoring expression value" { _ = foo(); } fn returnsVoid() void {} fn foo() i32 { return 1234; }
$ zig test void_ignored.zig 1/2 test "void is ignored"... OK 2/2 test "explicitly ignoring expression value"... OK All 2 tests passed.
Pointers to zero bit types also have zero bits. They always compare equal to each other:
const std = @import("std"); const expect = std.testing.expect; test "pointer to empty struct" { const Empty = struct {}; var a = Empty{}; var b = Empty{}; var ptr_a = &a; var ptr_b = &b; comptime try expect(ptr_a == ptr_b); }
$ zig test pointers_to_zero_bits.zig 1/1 test "pointer to empty struct"... OK All 1 tests passed.
The type being pointed to can only ever be one value; therefore loads and stores are never generated. ptrToInt and intToPtr are not allowed:
const Empty = struct {}; test "@ptrToInt for pointer to zero bit type" { var a = Empty{}; _ = @ptrToInt(&a); } test "@intToPtr for pointer to zero bit type" { _ = @intToPtr(*Empty, 0x1); }
$ zig test test.zig ./docgen_tmp/test.zig:4:5: error: pointer to size 0 type has no address var a = Empty{}; ^ ./docgen_tmp/test.zig:5:9: note: referenced here _ = @ptrToInt(&a); ^ ./docgen_tmp/test.zig:9:19: error: type '*Empty' has 0 bits and cannot store information _ = @intToPtr(*Empty, 0x1); ^ ./docgen_tmp/test.zig:9:9: note: referenced here _ = @intToPtr(*Empty, 0x1); ^
TODO add documentation for this
usingnamespace
is a declaration that mixes all the public declarations of the operand, which must be a struct, union, enum, or opaque, into the namespace:
test "using std namespace" { const S = struct { usingnamespace @import("std"); }; try S.testing.expect(true); }
$ zig test usingnamespace.zig 1/1 test "using std namespace"... OK All 1 tests passed.
usingnamespace
has an important use case when organizing the public API of a file or package. For example, one might have c.zig
with all of the C imports:
pub usingnamespace @cImport({ @cInclude("epoxy/gl.h"); @cInclude("GLFW/glfw3.h"); @cDefine("STBI_ONLY_PNG", ""); @cDefine("STBI_NO_STDIO", ""); @cInclude("stb_image.h"); });
The above example demonstrates using pub
to qualify the usingnamespace
additionally makes the imported declarations pub
. This can be used to forward declarations, giving precise control over what declarations a given file exposes.
Zig places importance on the concept of whether an expression is known at compile-time. There are a few different places this concept is used, and these building blocks are used to keep the language small, readable, and powerful.
Compile-time parameters is how Zig implements generics. It is compile-time duck typing.
fn max(comptime T: type, a: T, b: T) T { return if (a > b) a else b; } fn gimmeTheBiggerFloat(a: f32, b: f32) f32 { return max(f32, a, b); } fn gimmeTheBiggerInteger(a: u64, b: u64) u64 { return max(u64, a, b); }
In Zig, types are first-class citizens. They can be assigned to variables, passed as parameters to functions, and returned from functions. However, they can only be used in expressions which are known at compile-time, which is why the parameter T
in the above snippet must be marked with comptime
.
A comptime
parameter means that:
For example, if we were to introduce another function to the above snippet:
fn max(comptime T: type, a: T, b: T) T { return if (a > b) a else b; } test "try to pass a runtime type" { foo(false); } fn foo(condition: bool) void { const result = max( if (condition) f32 else u64, 1234, 5678); _ = result; }
$ zig test test.zig ./docgen_tmp/test.zig:9:9: error: values of type 'type' must be comptime known if (condition) f32 else u64, ^
This is an error because the programmer attempted to pass a value only known at run-time to a function which expects a value known at compile-time.
Another way to get an error is if we pass a type that violates the type checker when the function is analyzed. This is what it means to have compile-time duck typing.
For example:
fn max(comptime T: type, a: T, b: T) T { return if (a > b) a else b; } test "try to compare bools" { _ = max(bool, true, false); }
$ zig test test.zig ./docgen_tmp/test.zig:2:18: error: operator not allowed for type 'bool' return if (a > b) a else b; ^ ./docgen_tmp/test.zig:5:12: note: called from here _ = max(bool, true, false); ^ ./docgen_tmp/test.zig:4:29: note: called from here test "try to compare bools" { ^
On the flip side, inside the function definition with the comptime
parameter, the value is known at compile-time. This means that we actually could make this work for the bool type if we wanted to:
fn max(comptime T: type, a: T, b: T) T { if (T == bool) { return a or b; } else if (a > b) { return a; } else { return b; } } test "try to compare bools" { try @import("std").testing.expect(max(bool, false, true) == true); }
$ zig test comptime_max_with_bool.zig 1/1 test "try to compare bools"... OK All 1 tests passed.
This works because Zig implicitly inlines if
expressions when the condition is known at compile-time, and the compiler guarantees that it will skip analysis of the branch not taken.
This means that the actual function generated for max
in this situation looks like this:
fn max(a: bool, b: bool) bool { return a or b; }
All the code that dealt with compile-time known values is eliminated and we are left with only the necessary run-time code to accomplish the task.
This works the same way for switch
expressions - they are implicitly inlined when the target expression is compile-time known.
In Zig, the programmer can label variables as comptime
. This guarantees to the compiler that every load and store of the variable is performed at compile-time. Any violation of this results in a compile error.
This combined with the fact that we can inline
loops allows us to write a function which is partially evaluated at compile-time and partially at run-time.
For example:
const expect = @import("std").testing.expect; const CmdFn = struct { name: []const u8, func: fn(i32) i32, }; const cmd_fns = [_]CmdFn{ CmdFn {.name = "one", .func = one}, CmdFn {.name = "two", .func = two}, CmdFn {.name = "three", .func = three}, }; fn one(value: i32) i32 { return value + 1; } fn two(value: i32) i32 { return value + 2; } fn three(value: i32) i32 { return value + 3; } fn performFn(comptime prefix_char: u8, start_value: i32) i32 { var result: i32 = start_value; comptime var i = 0; inline while (i < cmd_fns.len) : (i += 1) { if (cmd_fns[i].name[0] == prefix_char) { result = cmd_fns[i].func(result); } } return result; } test "perform fn" { try expect(performFn('t', 1) == 6); try expect(performFn('o', 0) == 1); try expect(performFn('w', 99) == 99); }
$ zig test comptime_vars.zig 1/1 test "perform fn"... OK All 1 tests passed.
This example is a bit contrived, because the compile-time evaluation component is unnecessary; this code would work fine if it was all done at run-time. But it does end up generating different code. In this example, the function performFn
is generated three different times, for the different values of prefix_char
provided:
// From the line: // expect(performFn('t', 1) == 6); fn performFn(start_value: i32) i32 { var result: i32 = start_value; result = two(result); result = three(result); return result; }
// From the line: // expect(performFn('o', 0) == 1); fn performFn(start_value: i32) i32 { var result: i32 = start_value; result = one(result); return result; }
// From the line: // expect(performFn('w', 99) == 99); fn performFn(start_value: i32) i32 { var result: i32 = start_value; return result; }
Note that this happens even in a debug build; in a release build these generated functions still pass through rigorous LLVM optimizations. The important thing to note, however, is not that this is a way to write more optimized code, but that it is a way to make sure that what should happen at compile-time, does happen at compile-time. This catches more errors and as demonstrated later in this article, allows expressiveness that in other languages requires using macros, generated code, or a preprocessor to accomplish.
In Zig, it matters whether a given expression is known at compile-time or run-time. A programmer can use a comptime
expression to guarantee that the expression will be evaluated at compile-time. If this cannot be accomplished, the compiler will emit an error. For example:
extern fn exit() noreturn; test "foo" { comptime { exit(); } }
$ zig test test.zig ./docgen_tmp/test.zig:5:9: error: unable to evaluate constant expression exit(); ^ ./docgen_tmp/test.zig:5:13: note: referenced here exit(); ^
It doesn't make sense that a program could call exit()
(or any other external function) at compile-time, so this is a compile error. However, a comptime
expression does much more than sometimes cause a compile error.
Within a comptime
expression:
comptime
variables.if
, while
, for
, and switch
expressions are evaluated at compile-time, or emit a compile error if this is not possible.This means that a programmer can create a function which is called both at compile-time and run-time, with no modification to the function required.
Let's look at an example:
const expect = @import("std").testing.expect; fn fibonacci(index: u32) u32 { if (index < 2) return index; return fibonacci(index - 1) + fibonacci(index - 2); } test "fibonacci" { // test fibonacci at run-time try expect(fibonacci(7) == 13); // test fibonacci at compile-time comptime { try expect(fibonacci(7) == 13); } }
$ zig test fibonacci_recursion.zig 1/1 test "fibonacci"... OK All 1 tests passed.
Imagine if we had forgotten the base case of the recursive function and tried to run the tests:
const expect = @import("std").testing.expect; fn fibonacci(index: u32) u32 { //if (index < 2) return index; return fibonacci(index - 1) + fibonacci(index - 2); } test "fibonacci" { comptime { try expect(fibonacci(7) == 13); } }
$ zig test test.zig ./docgen_tmp/test.zig:5:28: error: operation caused overflow return fibonacci(index - 1) + fibonacci(index - 2); ^ ./docgen_tmp/test.zig:5:21: note: called from here return fibonacci(index - 1) + fibonacci(index - 2); ^ ./docgen_tmp/test.zig:5:21: note: called from here return fibonacci(index - 1) + fibonacci(index - 2); ^ ./docgen_tmp/test.zig:5:21: note: called from here return fibonacci(index - 1) + fibonacci(index - 2); ^ ./docgen_tmp/test.zig:5:21: note: called from here return fibonacci(index - 1) + fibonacci(index - 2); ^ ./docgen_tmp/test.zig:5:21: note: called from here return fibonacci(index - 1) + fibonacci(index - 2); ^ ./docgen_tmp/test.zig:5:21: note: called from here return fibonacci(index - 1) + fibonacci(index - 2); ^ ./docgen_tmp/test.zig:5:21: note: called from here return fibonacci(index - 1) + fibonacci(index - 2); ^ ./docgen_tmp/test.zig:10:29: note: called from here try expect(fibonacci(7) == 13); ^ ./docgen_tmp/test.zig:8:18: note: called from here test "fibonacci" { ^ ./docgen_tmp/test.zig:5:21: note: referenced here return fibonacci(index - 1) + fibonacci(index - 2); ^ ./docgen_tmp/test.zig:10:29: note: referenced here try expect(fibonacci(7) == 13); ^
The compiler produces an error which is a stack trace from trying to evaluate the function at compile-time.
Luckily, we used an unsigned integer, and so when we tried to subtract 1 from 0, it triggered undefined behavior, which is always a compile error if the compiler knows it happened. But what would have happened if we used a signed integer?
const expect = @import("std").testing.expect; fn fibonacci(index: i32) i32 { //if (index < 2) return index; return fibonacci(index - 1) + fibonacci(index - 2); } test "fibonacci" { comptime { try expect(fibonacci(7) == 13); } }
$ zig test test.zig ./docgen_tmp/test.zig:5:21: error: evaluation exceeded 1000 backwards branches return fibonacci(index - 1) + fibonacci(index - 2); ^ ./docgen_tmp/test.zig:5:21: note: called from here return fibonacci(index - 1) + fibonacci(index - 2); ^ ./docgen_tmp/test.zig:5:21: note: called from here return fibonacci(index - 1) + fibonacci(index - 2); ^ ./docgen_tmp/test.zig:5:21: note: called from here return fibonacci(index - 1) + fibonacci(index - 2); ^ ./docgen_tmp/test.zig:5:21: note: called from here return fibonacci(index - 1) + fibonacci(index - 2); ^ ./docgen_tmp/test.zig:5:21: note: called from here return fibonacci(index - 1) + fibonacci(index - 2); ^ ./docgen_tmp/test.zig:5:21: note: called from here return fibonacci(index - 1) + fibonacci(index - 2); ^ ./docgen_tmp/test.zig:5:21: note: called from here return fibonacci(index - 1) + fibonacci(index - 2); ^ ./docgen_tmp/test.zig:5:21: note: called from here return fibonacci(index - 1) + fibonacci(index - 2); ^ ./docgen_tmp/test.zig:5:21: note: called from here return fibonacci(index - 1) + fibonacci(index - 2); ^ ./docgen_tmp/test.zig:5:21: note: called from here return fibonacci(index - 1) + fibonacci(index - 2); ^ ./docgen_tmp/test.zig:5:21: note: called from here return fibonacci(index - 1) + fibonacci(index - 2); ^ ./docgen_tmp/test.zig:10:29: note: referenced here try expect(fibonacci(7) == 13); ^
The compiler noticed that evaluating this function at compile-time took a long time, and thus emitted a compile error and gave up. If the programmer wants to increase the budget for compile-time computation, they can use a built-in function called @setEvalBranchQuota to change the default number 1000 to something else.
What if we fix the base case, but put the wrong value in the expect
line?
const expect = @import("std").testing.expect; fn fibonacci(index: i32) i32 { if (index < 2) return index; return fibonacci(index - 1) + fibonacci(index - 2); } test "fibonacci" { comptime { try expect(fibonacci(7) == 99999); } }
$ zig test test.zig 1/1 test "fibonacci"... test "fibonacci"... FAIL (TestUnexpectedResult) FAIL (TestUnexpectedResult) 0 passed; 0 skipped; 1 failed. error: the following test command failed with exit code 1: docgen_tmp/zig-cache/o/8e4964e05ddaf866e77360a551b3c05b/test /home/andy/Downloads/zig/build-release/zig
What happened is Zig started interpreting the expect
function with the parameter ok
set to false
. When the interpreter hit @panic
it emitted a compile error because a panic during compile causes a compile error if it is detected at compile-time.
At container level (outside of any function), all expressions are implicitly comptime
expressions. This means that we can use functions to initialize complex static data. For example:
const first_25_primes = firstNPrimes(25); const sum_of_first_25_primes = sum(&first_25_primes); fn firstNPrimes(comptime n: usize) [n]i32 { var prime_list: [n]i32 = undefined; var next_index: usize = 0; var test_number: i32 = 2; while (next_index < prime_list.len) : (test_number += 1) { var test_prime_index: usize = 0; var is_prime = true; while (test_prime_index < next_index) : (test_prime_index += 1) { if (test_number % prime_list[test_prime_index] == 0) { is_prime = false; break; } } if (is_prime) { prime_list[next_index] = test_number; next_index += 1; } } return prime_list; } fn sum(numbers: []const i32) i32 { var result: i32 = 0; for (numbers) |x| { result += x; } return result; } test "variable values" { try @import("std").testing.expect(sum_of_first_25_primes == 1060); }
$ zig test N_primes.zig 1/1 test "variable values"... OK All 1 tests passed.
When we compile this program, Zig generates the constants with the answer pre-computed. Here are the lines from the generated LLVM IR:
@0 = internal unnamed_addr constant [25 x i32] [i32 2, i32 3, i32 5, i32 7, i32 11, i32 13, i32 17, i32 19, i32 23, i32 29, i32 31, i32 37, i32 41, i32 43, i32 47, i32 53, i32 59, i32 61, i32 67, i32 71, i32 73, i32 79, i32 83, i32 89, i32 97] @1 = internal unnamed_addr constant i32 1060
Note that we did not have to do anything special with the syntax of these functions. For example, we could call the sum
function as is with a slice of numbers whose length and values were only known at run-time.
Zig uses these capabilities to implement generic data structures without introducing any special-case syntax. If you followed along so far, you may already know how to create a generic data structure.
Here is an example of a generic List
data structure, that we will instantiate with the type i32
. In Zig we refer to the type as List(i32)
.
fn List(comptime T: type) type { return struct { items: []T, len: usize, }; }
That's it. It's a function that returns an anonymous struct
. For the purposes of error messages and debugging, Zig infers the name "List(i32)"
from the function name and parameters invoked when creating the anonymous struct.
To keep the language small and uniform, all aggregate types in Zig are anonymous. To give a type a name, we assign it to a constant:
const Node = struct { next: *Node, name: []u8, };
This works because all top level declarations are order-independent, and as long as there isn't an actual infinite regression, values can refer to themselves, directly or indirectly. In this case, Node
refers to itself as a pointer, which is not actually an infinite regression, so it works fine.
Putting all of this together, let's see how print
works in Zig.
const print = @import("std").debug.print; const a_number: i32 = 1234; const a_string = "foobar"; pub fn main() void { print("here is a string: '{s}' here is a number: {}\n", .{a_string, a_number}); }
$ zig build-exe print.zig $ ./print here is a string: 'foobar' here is a number: 1234
Let's crack open the implementation of this and see how it works:
const Writer = struct { /// Calls print and then flushes the buffer. pub fn print(self: *Writer, comptime format: []const u8, args: anytype) anyerror!void { const State = enum { start, open_brace, close_brace, }; comptime var start_index: usize = 0; comptime var state = State.start; comptime var next_arg: usize = 0; inline for (format) |c, i| { switch (state) { State.start => switch (c) { '{' => { if (start_index < i) try self.write(format[start_index..i]); state = State.open_brace; }, '}' => { if (start_index < i) try self.write(format[start_index..i]); state = State.close_brace; }, else => {}, }, State.open_brace => switch (c) { '{' => { state = State.start; start_index = i; }, '}' => { try self.printValue(args[next_arg]); next_arg += 1; state = State.start; start_index = i + 1; }, 's' => { continue; }, else => @compileError("Unknown format character: " ++ [1]u8{c}), }, State.close_brace => switch (c) { '}' => { state = State.start; start_index = i; }, else => @compileError("Single '}' encountered in format string"), }, } } comptime { if (args.len != next_arg) { @compileError("Unused arguments"); } if (state != State.start) { @compileError("Incomplete format string: " ++ format); } } if (start_index < format.len) { try self.write(format[start_index..format.len]); } try self.flush(); } fn write(self: *Writer, value: []const u8) !void { _ = self; _ = value; } pub fn printValue(self: *Writer, value: anytype) !void { _ = self; _ = value; } fn flush(self: *Writer) !void { _ = self; } };
This is a proof of concept implementation; the actual function in the standard library has more formatting capabilities.
Note that this is not hard-coded into the Zig compiler; this is userland code in the standard library.
When this function is analyzed from our example code above, Zig partially evaluates the function and emits a function that actually looks like this:
pub fn print(self: *Writer, arg0: []const u8, arg1: i32) !void { try self.write("here is a string: '"); try self.printValue(arg0); try self.write("' here is a number: "); try self.printValue(arg1); try self.write("\n"); try self.flush(); }
printValue
is a function that takes a parameter of any type, and does different things depending on the type:
const Writer = struct { pub fn printValue(self: *Writer, value: anytype) !void { switch (@typeInfo(@TypeOf(value))) { .Int => { return self.writeInt(value); }, .Float => { return self.writeFloat(value); }, .Pointer => { return self.write(value); }, else => { @compileError("Unable to print type '" ++ @typeName(@TypeOf(value)) ++ "'"); }, } } fn write(self: *Writer, value: []const u8) !void { _ = self; _ = value; } fn writeInt(self: *Writer, value: anytype) !void { _ = self; _ = value; } fn writeFloat(self: *Writer, value: anytype) !void { _ = self; _ = value; } };
And now, what happens if we give too many arguments to print
?
const print = @import("std").debug.print; const a_number: i32 = 1234; const a_string = "foobar"; test "print too many arguments" { print("here is a string: '{s}' here is a number: {}\n", .{ a_string, a_number, a_number, }); }
$ zig test test.zig ./lib/std/fmt.zig:360:18: error: Unused argument in 'here is a string: '{s}' here is a number: {} ' 1 => @compileError("Unused argument in '" ++ fmt ++ "'"), ^ ./lib/std/io/writer.zig:28:34: note: called from here return std.fmt.format(self, format, args); ^ ./lib/std/debug.zig:66:27: note: called from here nosuspend stderr.print(fmt, args) catch return; ^ ./docgen_tmp/test.zig:7:10: note: called from here print("here is a string: '{s}' here is a number: {}\n", .{ ^ ./docgen_tmp/test.zig:6:33: note: called from here test "print too many arguments" { ^ ./lib/std/io/writer.zig:28:34: error: expected type 'std.os.WriteError!void', found '@typeInfo(@typeInfo(@TypeOf(std.fmt.format)).Fn.return_type.?).ErrorUnion.error_set!void' return std.fmt.format(self, format, args); ^ ./lib/std/debug.zig:66:27: note: called from here nosuspend stderr.print(fmt, args) catch return; ^ ./docgen_tmp/test.zig:7:10: note: called from here print("here is a string: '{s}' here is a number: {}\n", .{ ^ ./docgen_tmp/test.zig:6:33: note: called from here test "print too many arguments" { ^ ./lib/std/io/writer.zig:28:34: note: error set '@typeInfo(@typeInfo(@TypeOf(std.fmt.format)).Fn.return_type.?).ErrorUnion.error_set' cannot cast into error set 'std.os.WriteError' return std.fmt.format(self, format, args); ^
Zig gives programmers the tools needed to protect themselves against their own mistakes.
Zig doesn't care whether the format argument is a string literal, only that it is a compile-time known value that can be coerced to a []const u8
:
const print = @import("std").debug.print; const a_number: i32 = 1234; const a_string = "foobar"; const fmt = "here is a string: '{s}' here is a number: {}\n"; pub fn main() void { print(fmt, .{a_string, a_number}); }
$ zig build-exe print.zig $ ./print here is a string: 'foobar' here is a number: 1234
This works fine.
Zig does not special case string formatting in the compiler and instead exposes enough power to accomplish this task in userland. It does so without introducing another language on top of Zig, such as a macro language or a preprocessor language. It's Zig all the way down.
See also:
For some use cases, it may be necessary to directly control the machine code generated by Zig programs, rather than relying on Zig's code generation. For these cases, one can use inline assembly. Here is an example of implementing Hello, World on x86_64 Linux using inline assembly:
pub fn main() noreturn { const msg = "hello world\n"; _ = syscall3(SYS_write, STDOUT_FILENO, @ptrToInt(msg), msg.len); _ = syscall1(SYS_exit, 0); unreachable; } pub const SYS_write = 1; pub const SYS_exit = 60; pub const STDOUT_FILENO = 1; pub fn syscall1(number: usize, arg1: usize) usize { return asm volatile ("syscall" : [ret] "={rax}" (-> usize) : [number] "{rax}" (number), [arg1] "{rdi}" (arg1) : "rcx", "r11" ); } pub fn syscall3(number: usize, arg1: usize, arg2: usize, arg3: usize) usize { return asm volatile ("syscall" : [ret] "={rax}" (-> usize) : [number] "{rax}" (number), [arg1] "{rdi}" (arg1), [arg2] "{rsi}" (arg2), [arg3] "{rdx}" (arg3) : "rcx", "r11" ); }
$ zig build-exe test.zig -target x86_64-linux $ ./test hello world
Dissecting the syntax:
// Inline assembly is an expression which returns a value. // the `asm` keyword begins the expression. _ = asm // `volatile` is an optional modifier that tells Zig this // inline assembly expression has side-effects. Without // `volatile`, Zig is allowed to delete the inline assembly // code if the result is unused. volatile ( // Next is a comptime string which is the assembly code. // Inside this string one may use `%[ret]`, `%[number]`, // or `%[arg1]` where a register is expected, to specify // the register that Zig uses for the argument or return value, // if the register constraint strings are used. However in // the below code, this is not used. A literal `%` can be // obtained by escaping it with a double percent: `%%`. // Often multiline string syntax comes in handy here. \\syscall // Next is the output. It is possible in the future Zig will // support multiple outputs, depending on how // https://github.com/ziglang/zig/issues/215 is resolved. // It is allowed for there to be no outputs, in which case // this colon would be directly followed by the colon for the inputs. : // This specifies the name to be used in `%[ret]` syntax in // the above assembly string. This example does not use it, // but the syntax is mandatory. [ret] // Next is the output constraint string. This feature is still // considered unstable in Zig, and so LLVM/GCC documentation // must be used to understand the semantics. // http://releases.llvm.org/10.0.0/docs/LangRef.html#inline-asm-constraint-string // https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html // In this example, the constraint string means "the result value of // this inline assembly instruction is whatever is in $rax". "={rax}" // Next is either a value binding, or `->` and then a type. The // type is the result type of the inline assembly expression. // If it is a value binding, then `%[ret]` syntax would be used // to refer to the register bound to the value. (-> usize) // Next is the list of inputs. // The constraint for these inputs means, "when the assembly code is // executed, $rax shall have the value of `number` and $rdi shall have // the value of `arg1`". Any number of input parameters is allowed, // including none. : [number] "{rax}" (number), [arg1] "{rdi}" (arg1) // Next is the list of clobbers. These declare a set of registers whose // values will not be preserved by the execution of this assembly code. // These do not include output or input registers. The special clobber // value of "memory" means that the assembly writes to arbitrary undeclared // memory locations - not only the memory pointed to by a declared indirect // output. In this example we list $rcx and $r11 because it is known the // kernel syscall does not preserve these registers. : "rcx", "r11" );
For i386 and x86_64 targets, the syntax is AT&T syntax, rather than the more popular Intel syntax. This is due to technical constraints; assembly parsing is provided by LLVM and its support for Intel syntax is buggy and not well tested.
Some day Zig may have its own assembler. This would allow it to integrate more seamlessly into the language, as well as be compatible with the popular NASM syntax. This documentation section will be updated before 1.0.0 is released, with a conclusive statement about the status of AT&T vs Intel/NASM syntax.
Output constraints are still considered to be unstable in Zig, and so LLVM documentation and GCC documentation must be used to understand the semantics.
Note that some breaking changes to output constraints are planned with issue #215.
Input constraints are still considered to be unstable in Zig, and so LLVM documentation and GCC documentation must be used to understand the semantics.
Note that some breaking changes to input constraints are planned with issue #215.
Clobbers are the set of registers whose values will not be preserved by the execution of the assembly code. These do not include output or input registers. The special clobber value of "memory"
means that the assembly causes writes to arbitrary undeclared memory locations - not only the memory pointed to by a declared indirect output.
Failure to declare the full set of clobbers for a given inline assembly expression is unchecked Undefined Behavior.
When an assembly expression occurs in a container level comptime block, this is global assembly.
This kind of assembly has different rules than inline assembly. First, volatile
is not valid because all global assembly is unconditionally included. Second, there are no inputs, outputs, or clobbers. All global assembly is concatenated verbatim into one long string and assembled together. There are no template substitution rules regarding %
as there are in inline assembly expressions.
const std = @import("std"); const expect = std.testing.expect; comptime { asm ( \\.global my_func; \\.type my_func, @function; \\my_func: \\ lea (%rdi,%rsi,1),%eax \\ retq ); } extern fn my_func(a: i32, b: i32) i32; test "global assembly" { try expect(my_func(12, 34) == 46); }
$ zig test global-asm.zig -target x86_64-linux 1/1 test "global assembly"... OK All 1 tests passed.
TODO: @fence()
TODO: @atomic rmw
TODO: builtin atomic memory ordering enum
When a function is called, a frame is pushed to the stack, the function runs until it reaches a return statement, and then the frame is popped from the stack. The code following the callsite does not run until the function returns.
An async function is a function whose execution is split into an async
initiation, followed by an await
completion. Its frame is provided explicitly by the caller, and it can be suspended and resumed any number of times.
The code following the async
callsite runs immediately after the async function first suspends. When the return value of the async function is needed, the calling code can await
on the async function frame. This will suspend the calling code until the async function completes, at which point execution resumes just after the await
callsite.
Zig infers that a function is async
when it observes that the function contains a suspension point. Async functions can be called the same as normal functions. A function call of an async function is a suspend point.
At any point, a function may suspend itself. This causes control flow to return to the callsite (in the case of the first suspension), or resumer (in the case of subsequent suspensions).
const std = @import("std"); const expect = std.testing.expect; var x: i32 = 1; test "suspend with no resume" { var frame = async func(); try expect(x == 2); _ = frame; } fn func() void { x += 1; suspend {} // This line is never reached because the suspend has no matching resume. x += 1; }
$ zig test suspend_no_resume.zig 1/1 test "suspend with no resume"... OK All 1 tests passed.
In the same way that each allocation should have a corresponding free, Each suspend
should have a corresponding resume
. A suspend block allows a function to put a pointer to its own frame somewhere, for example into an event loop, even if that action will perform a resume
operation on a different thread. @frame provides access to the async function frame pointer.
const std = @import("std"); const expect = std.testing.expect; var the_frame: anyframe = undefined; var result = false; test "async function suspend with block" { _ = async testSuspendBlock(); try expect(!result); resume the_frame; try expect(result); } fn testSuspendBlock() void { suspend { comptime try expect(@TypeOf(@frame()) == *@Frame(testSuspendBlock)); the_frame = @frame(); } result = true; }
$ zig test async_suspend_block.zig 1/1 test "async function suspend with block"... OK All 1 tests passed.
suspend
causes a function to be async
.
Upon entering a suspend
block, the async function is already considered suspended, and can be resumed. For example, if you started another kernel thread, and had that thread call resume
on the frame pointer provided by the @frame, the new thread would begin executing after the suspend block, while the old thread continued executing the suspend block.
However, the async function can be directly resumed from the suspend block, in which case it never returns to its resumer and continues executing.
const std = @import("std"); const expect = std.testing.expect; test "resume from suspend" { var my_result: i32 = 1; _ = async testResumeFromSuspend(&my_result); try std.testing.expect(my_result == 2); } fn testResumeFromSuspend(my_result: *i32) void { suspend { resume @frame(); } my_result.* += 1; suspend {} my_result.* += 1; }
$ zig test resume_from_suspend.zig 1/1 test "resume from suspend"... OK All 1 tests passed.
This is guaranteed to tail call, and therefore will not cause a new stack frame.
In the same way that every suspend
has a matching resume
, every async
has a matching await
in standard code.
However, it is possible to have an async
call without a matching await
. Upon completion of the async function, execution would continue at the most recent async
callsite or resume
callsite, and the return value of the async function would be lost.
const std = @import("std"); const expect = std.testing.expect; test "async and await" { // The test block is not async and so cannot have a suspend // point in it. By using the nosuspend keyword, we promise that // the code in amain will finish executing without suspending // back to the test block. nosuspend amain(); } fn amain() void { var frame = async func(); comptime try expect(@TypeOf(frame) == @Frame(func)); const ptr: anyframe->void = &frame; const any_ptr: anyframe = ptr; resume any_ptr; await ptr; } fn func() void { suspend {} }
$ zig test async_await.zig 1/1 test "async and await"... OK All 1 tests passed.
The await
keyword is used to coordinate with an async function's return
statement.
await
is a suspend point, and takes as an operand anything that coerces to anyframe->T
. Calling await
on the frame of an async function will cause execution to continue at the await
callsite once the target function completes.
There is a common misconception that await
resumes the target function. It is the other way around: it suspends until the target function completes. In the event that the target function has already completed, await
does not suspend; instead it copies the return value directly from the target function's frame.
const std = @import("std"); const expect = std.testing.expect; var the_frame: anyframe = undefined; var final_result: i32 = 0; test "async function await" { seq('a'); _ = async amain(); seq('f'); resume the_frame; seq('i'); try expect(final_result == 1234); try expect(std.mem.eql(u8, &seq_points, "abcdefghi")); } fn amain() void { seq('b'); var f = async another(); seq('e'); final_result = await f; seq('h'); } fn another() i32 { seq('c'); suspend { seq('d'); the_frame = @frame(); } seq('g'); return 1234; } var seq_points = [_]u8{0} ** "abcdefghi".len; var seq_index: usize = 0; fn seq(c: u8) void { seq_points[seq_index] = c; seq_index += 1; }
$ zig test async_await_sequence.zig 1/1 test "async function await"... OK All 1 tests passed.
In general, suspend
is lower level than await
. Most application code will use only async
and await
, but event loop implementations will make use of suspend
internally.
Putting all of this together, here is an example of typical async
/await
usage:
const std = @import("std"); const Allocator = std.mem.Allocator; pub fn main() void { _ = async amainWrap(); // Typically we would use an event loop to manage resuming async functions, // but in this example we hard code what the event loop would do, // to make things deterministic. resume global_file_frame; resume global_download_frame; } fn amainWrap() void { amain() catch |e| { std.debug.print("{}\n", .{e}); if (@errorReturnTrace()) |trace| { std.debug.dumpStackTrace(trace.*); } std.process.exit(1); }; } fn amain() !void { const allocator = std.heap.page_allocator; var download_frame = async fetchUrl(allocator, "https://example.com/"); var awaited_download_frame = false; errdefer if (!awaited_download_frame) { if (await download_frame) |r| allocator.free(r) else |_| {} }; var file_frame = async readFile(allocator, "something.txt"); var awaited_file_frame = false; errdefer if (!awaited_file_frame) { if (await file_frame) |r| allocator.free(r) else |_| {} }; awaited_file_frame = true; const file_text = try await file_frame; defer allocator.free(file_text); awaited_download_frame = true; const download_text = try await download_frame; defer allocator.free(download_text); std.debug.print("download_text: {s}\n", .{download_text}); std.debug.print("file_text: {s}\n", .{file_text}); } var global_download_frame: anyframe = undefined; fn fetchUrl(allocator: Allocator, url: []const u8) ![]u8 { _ = url; // this is just an example, we don't actually do it! const result = try allocator.dupe(u8, "this is the downloaded url contents"); errdefer allocator.free(result); suspend { global_download_frame = @frame(); } std.debug.print("fetchUrl returning\n", .{}); return result; } var global_file_frame: anyframe = undefined; fn readFile(allocator: Allocator, filename: []const u8) ![]u8 { _ = filename; // this is just an example, we don't actually do it! const result = try allocator.dupe(u8, "this is the file contents"); errdefer allocator.free(result); suspend { global_file_frame = @frame(); } std.debug.print("readFile returning\n", .{}); return result; }
$ zig build-exe async.zig $ ./async readFile returning fetchUrl returning download_text: this is the downloaded url contents file_text: this is the file contents
Now we remove the suspend
and resume
code, and observe the same behavior, with one tiny difference:
const std = @import("std"); const Allocator = std.mem.Allocator; pub fn main() void { _ = async amainWrap(); } fn amainWrap() void { amain() catch |e| { std.debug.print("{}\n", .{e}); if (@errorReturnTrace()) |trace| { std.debug.dumpStackTrace(trace.*); } std.process.exit(1); }; } fn amain() !void { const allocator = std.heap.page_allocator; var download_frame = async fetchUrl(allocator, "https://example.com/"); var awaited_download_frame = false; errdefer if (!awaited_download_frame) { if (await download_frame) |r| allocator.free(r) else |_| {} }; var file_frame = async readFile(allocator, "something.txt"); var awaited_file_frame = false; errdefer if (!awaited_file_frame) { if (await file_frame) |r| allocator.free(r) else |_| {} }; awaited_file_frame = true; const file_text = try await file_frame; defer allocator.free(file_text); awaited_download_frame = true; const download_text = try await download_frame; defer allocator.free(download_text); std.debug.print("download_text: {s}\n", .{download_text}); std.debug.print("file_text: {s}\n", .{file_text}); } fn fetchUrl(allocator: Allocator, url: []const u8) ![]u8 { _ = url; // this is just an example, we don't actually do it! const result = try allocator.dupe(u8, "this is the downloaded url contents"); errdefer allocator.free(result); std.debug.print("fetchUrl returning\n", .{}); return result; } fn readFile(allocator: Allocator, filename: []const u8) ![]u8 { _ = filename; // this is just an example, we don't actually do it! const result = try allocator.dupe(u8, "this is the file contents"); errdefer allocator.free(result); std.debug.print("readFile returning\n", .{}); return result; }
$ zig build-exe blocking.zig $ ./blocking fetchUrl returning readFile returning download_text: this is the downloaded url contents file_text: this is the file contents
Previously, the fetchUrl
and readFile
functions suspended, and were resumed in an order determined by the main
function. Now, since there are no suspend points, the order of the printed "... returning" messages is determined by the order of async
callsites.
Builtin functions are provided by the compiler and are prefixed with @
. The comptime
keyword on a parameter means that the parameter must be known at compile time.
@addWithOverflow(comptime T: type, a: T, b: T, result: *T) bool
Performs result.* = a + b
. If overflow or underflow occurs, stores the overflowed bits in result
and returns true
. If no overflow or underflow occurs, returns false
.
@alignCast(comptime alignment: u29, ptr: anytype) anytype
ptr
can be *T
, fn()
, ?*T
, ?fn()
, or []T
. It returns the same type as ptr
except with the alignment adjusted to the new value.
A pointer alignment safety check is added to the generated code to make sure the pointer is aligned as promised.
@alignOf(comptime T: type) comptime_int
This function returns the number of bytes that this type should be aligned to for the current target to match the C ABI. When the child type of a pointer has this alignment, the alignment can be omitted from the type.
const expect = @import("std").debug.assert; comptime { assert(*u32 == *align(@alignOf(u32)) u32); }
The result is a target-specific compile time constant. It is guaranteed to be less than or equal to @sizeOf(T).
See also:
@as(comptime T: type, expression) T
Performs Type Coercion. This cast is allowed when the conversion is unambiguous and safe, and is the preferred way to convert between types, whenever possible.
@asyncCall(frame_buffer: []align(@alignOf(@Frame(anyAsyncFunction))) u8, result_ptr, function_ptr, args: anytype) anyframe->T
@asyncCall
performs an async
call on a function pointer, which may or may not be an async function.
The provided frame_buffer
must be large enough to fit the entire function frame. This size can be determined with @frameSize. To provide a too-small buffer invokes safety-checked Undefined Behavior.
result_ptr
is optional (null may be provided). If provided, the function call will write its result directly to the result pointer, which will be available to read after await completes. Any result location provided to await
will copy the result from result_ptr
.
const std = @import("std"); const expect = std.testing.expect; test "async fn pointer in a struct field" { var data: i32 = 1; const Foo = struct { bar: fn (*i32) callconv(.Async) void, }; var foo = Foo{ .bar = func }; var bytes: [64]u8 align(@alignOf(@Frame(func))) = undefined; const f = @asyncCall(&bytes, {}, foo.bar, .{&data}); try expect(data == 2); resume f; try expect(data == 4); } fn func(y: *i32) void { defer y.* += 2; y.* += 1; suspend {} }
$ zig test async_struct_field_fn_pointer.zig 1/1 test "async fn pointer in a struct field"... OK All 1 tests passed.
@atomicLoad(comptime T: type, ptr: *const T, comptime ordering: builtin.AtomicOrder) T
This builtin function atomically dereferences a pointer and returns the value.
T
must be a pointer, a bool
, a float, an integer or an enum.
See also:
@atomicRmw(comptime T: type, ptr: *T, comptime op: builtin.AtomicRmwOp, operand: T, comptime ordering: builtin.AtomicOrder) T
This builtin function atomically modifies memory and then returns the previous value.
T
must be a pointer, a bool
, a float, an integer or an enum.
Supported operations:
.Xchg
- stores the operand unmodified. Supports enums, integers and floats..Add
- for integers, twos complement wraparound addition. Also supports Floats..Sub
- for integers, twos complement wraparound subtraction. Also supports Floats..And
- bitwise and.Nand
- bitwise nand.Or
- bitwise or.Xor
- bitwise xor.Max
- stores the operand if it is larger. Supports integers and floats..Min
- stores the operand if it is smaller. Supports integers and floats.See also:
@atomicStore(comptime T: type, ptr: *T, value: T, comptime ordering: builtin.AtomicOrder) void
This builtin function atomically stores a value.
T
must be a pointer, a bool
, a float, an integer or an enum.
See also:
@bitCast(comptime DestType: type, value: anytype) DestType
Converts a value of one type to another type.
Asserts that @sizeOf(@TypeOf(value)) == @sizeOf(DestType)
.
Asserts that @typeInfo(DestType) != .Pointer
. Use @ptrCast
or @intToPtr
if you need this.
Can be used for these things for example:
f32
to u32
bitsi32
to u32
preserving twos complement Works at compile-time if value
is known at compile time. It's a compile error to bitcast a struct to a scalar type of the same size since structs have undefined layout. However if the struct is packed then it works.
@bitOffsetOf(comptime T: type, comptime field_name: []const u8) comptime_int
Returns the bit offset of a field relative to its containing struct.
For non packed structs, this will always be divisible by 8
. For packed structs, non-byte-aligned fields will share a byte offset, but they will have different bit offsets.
See also:
@boolToInt(value: bool) u1
Converts true
to @as(u1, 1)
and false
to @as(u1, 0)
.
If the value is known at compile-time, the return type is comptime_int
instead of u1
.
@bitSizeOf(comptime T: type) comptime_int
This function returns the number of bits it takes to store T
in memory if the type were a field in a packed struct/union. The result is a target-specific compile time constant.
This function measures the size at runtime. For types that are disallowed at runtime, such as comptime_int
and type
, the result is 0
.
See also:
@breakpoint()
This function inserts a platform-specific debug trap instruction which causes debuggers to break there.
This function is only valid within function scope.
@mulAdd(comptime T: type, a: T, b: T, c: T) T
Fused multiply add, similar to (a * b) + c
, except only rounds once, and is thus more accurate.
Supports Floats and Vectors of floats.
@byteSwap(comptime T: type, operand: T) T
T
must be an integer type with bit count evenly divisible by 8.
operand
may be an integer or vector.
Swaps the byte order of the integer. This converts a big endian integer to a little endian integer, and converts a little endian integer to a big endian integer.
Note that for the purposes of memory layout with respect to endianness, the integer type should be related to the number of bytes reported by @sizeOf bytes. This is demonstrated with u24
. @sizeOf(u24) == 4
, which means that a u24
stored in memory takes 4 bytes, and those 4 bytes are what are swapped on a little vs big endian system. On the other hand, if T
is specified to be u24
, then only 3 bytes are reversed.
@bitReverse(comptime T: type, integer: T) T
T
accepts any integer type.
Reverses the bitpattern of an integer value, including the sign bit if applicable.
For example 0b10110110 (u8 = 182
, i8 = -74
) becomes 0b01101101 (u8 = 109
, i8 = 109
).
@offsetOf(comptime T: type, comptime field_name: []const u8) comptime_int
Returns the byte offset of a field relative to its containing struct.
See also:
@call(options: std.builtin.CallOptions, function: anytype, args: anytype) anytype
Calls a function, in the same way that invoking an expression with parentheses does:
const expect = @import("std").testing.expect; test "noinline function call" { try expect(@call(.{}, add, .{3, 9}) == 12); } fn add(a: i32, b: i32) i32 { return a + b; }
$ zig test call.zig 1/1 test "noinline function call"... OK All 1 tests passed.
@call
allows more flexibility than normal function call syntax does. The CallOptions
struct is reproduced here:
pub const CallOptions = struct { modifier: Modifier = .auto, /// Only valid when `Modifier` is `Modifier.async_kw`. stack: ?[]align(std.Target.stack_align) u8 = null, pub const Modifier = enum { /// Equivalent to function call syntax. auto, /// Equivalent to async keyword used with function call syntax. async_kw, /// Prevents tail call optimization. This guarantees that the return /// address will point to the callsite, as opposed to the callsite's /// callsite. If the call is otherwise required to be tail-called /// or inlined, a compile error is emitted instead. never_tail, /// Guarantees that the call will not be inlined. If the call is /// otherwise required to be inlined, a compile error is emitted instead. never_inline, /// Asserts that the function call will not suspend. This allows a /// non-async function to call an async function. no_async, /// Guarantees that the call will be generated with tail call optimization. /// If this is not possible, a compile error is emitted instead. always_tail, /// Guarantees that the call will inlined at the callsite. /// If this is not possible, a compile error is emitted instead. always_inline, /// Evaluates the call at compile-time. If the call cannot be completed at /// compile-time, a compile error is emitted instead. compile_time, }; };
@cDefine(comptime name: []u8, value)
This function can only occur inside @cImport
.
This appends #define $name $value
to the @cImport
temporary buffer.
To define without a value, like this:
#define _GNU_SOURCE
Use the void value, like this:
@cDefine("_GNU_SOURCE", {})
See also:
@cImport(expression) type
This function parses C code and imports the functions, types, variables, and compatible macro definitions into a new empty struct type, and then returns that type.
expression
is interpreted at compile time. The builtin functions @cInclude
, @cDefine
, and @cUndef
work within this expression, appending to a temporary buffer which is then parsed as C code.
Usually you should only have one @cImport
in your entire application, because it saves the compiler from invoking clang multiple times, and prevents inline functions from being duplicated.
Reasons for having multiple @cImport
expressions would be:
#define CONNECTION_COUNT
See also:
@cInclude(comptime path: []u8)
This function can only occur inside @cImport
.
This appends #include <$path>\n
to the c_import
temporary buffer.
See also:
@clz(comptime T: type, operand: T)
T
must be an integer type.
operand
may be an integer or vector.
This function counts the number of most-significant (leading in a big-Endian sense) zeroes in an integer.
If operand
is a comptime-known integer, the return type is comptime_int
. Otherwise, the return type is an unsigned integer or vector of unsigned integers with the minimum number of bits that can represent the bit count of the integer type.
If operand
is zero, @clz
returns the bit width of integer type T
.
See also:
@cmpxchgStrong(comptime T: type, ptr: *T, expected_value: T, new_value: T, success_order: AtomicOrder, fail_order: AtomicOrder) ?T
This function performs a strong atomic compare exchange operation. It's the equivalent of this code, except atomic:
fn cmpxchgStrongButNotAtomic(comptime T: type, ptr: *T, expected_value: T, new_value: T) ?T { const old_value = ptr.*; if (old_value == expected_value) { ptr.* = new_value; return null; } else { return old_value; } }
If you are using cmpxchg in a loop, @cmpxchgWeak is the better choice, because it can be implemented more efficiently in machine instructions.
T
must be a pointer, a bool
, a float, an integer or an enum.
@typeInfo(@TypeOf(ptr)).Pointer.alignment
must be >= @sizeOf(T).
See also:
@cmpxchgWeak(comptime T: type, ptr: *T, expected_value: T, new_value: T, success_order: AtomicOrder, fail_order: AtomicOrder) ?T
This function performs a weak atomic compare exchange operation. It's the equivalent of this code, except atomic:
fn cmpxchgWeakButNotAtomic(comptime T: type, ptr: *T, expected_value: T, new_value: T) ?T { const old_value = ptr.*; if (old_value == expected_value and usuallyTrueButSometimesFalse()) { ptr.* = new_value; return null; } else { return old_value; } }
If you are using cmpxchg in a loop, the sporadic failure will be no problem, and cmpxchgWeak
is the better choice, because it can be implemented more efficiently in machine instructions. However if you need a stronger guarantee, use @cmpxchgStrong.
T
must be a pointer, a bool
, a float, an integer or an enum.
@typeInfo(@TypeOf(ptr)).Pointer.alignment
must be >= @sizeOf(T).
See also:
@compileError(comptime msg: []u8)
This function, when semantically analyzed, causes a compile error with the message msg
.
There are several ways that code avoids being semantically checked, such as using if
or switch
with compile time constants, and comptime
functions.
@compileLog(args: ...)
This function prints the arguments passed to it at compile-time.
To prevent accidentally leaving compile log statements in a codebase, a compilation error is added to the build, pointing to the compile log statement. This error prevents code from being generated, but does not otherwise interfere with analysis.
This function can be used to do "printf debugging" on compile-time executing code.
const print = @import("std").debug.print; const num1 = blk: { var val1: i32 = 99; @compileLog("comptime val1 = ", val1); val1 = val1 + 1; break :blk val1; }; test "main" { @compileLog("comptime in main"); print("Runtime in main, num1 = {}.\n", .{num1}); }
$ zig test test.zig | *"comptime in main" | *"comptime val1 = ", 99 ./docgen_tmp/test.zig:11:5: error: found compile log statement @compileLog("comptime in main"); ^ ./docgen_tmp/test.zig:1:35: note: referenced here const print = @import("std").debug.print; ^ ./docgen_tmp/test.zig:13:5: note: referenced here print("Runtime in main, num1 = {}.\n", .{num1}); ^ ./docgen_tmp/test.zig:5:5: error: found compile log statement @compileLog("comptime val1 = ", val1); ^ ./docgen_tmp/test.zig:13:46: note: referenced here print("Runtime in main, num1 = {}.\n", .{num1}); ^
will output:
If all @compileLog
calls are removed or not encountered by analysis, the program compiles successfully and the generated executable prints:
const print = @import("std").debug.print; const num1 = blk: { var val1: i32 = 99; val1 = val1 + 1; break :blk val1; }; test "main" { print("Runtime in main, num1 = {}.\n", .{num1}); }
$ zig test without_compileLog.zig 1/1 test "main"... Runtime in main, num1 = 100. OK All 1 tests passed.
@ctz(comptime T: type, operand: T)
T
must be an integer type.
operand
may be an integer or vector.
This function counts the number of least-significant (trailing in a big-Endian sense) zeroes in an integer.
If operand
is a comptime-known integer, the return type is comptime_int
. Otherwise, the return type is an unsigned integer or vector of unsigned integers with the minimum number of bits that can represent the bit count of the integer type.
If operand
is zero, @ctz
returns the bit width of integer type T
.
See also:
@cUndef(comptime name: []u8)
This function can only occur inside @cImport
.
This appends #undef $name
to the @cImport
temporary buffer.
See also:
@divExact(numerator: T, denominator: T) T
Exact division. Caller guarantees denominator != 0
and @divTrunc(numerator, denominator) * denominator == numerator
.
@divExact(6, 3) == 2
@divExact(a, b) * b == a
For a function that returns a possible error code, use @import("std").math.divExact
.
See also:
@divFloor(numerator: T, denominator: T) T
Floored division. Rounds toward negative infinity. For unsigned integers it is the same as numerator / denominator
. Caller guarantees denominator != 0
and !(@typeInfo(T) == .Int and T.is_signed and numerator == std.math.minInt(T) and denominator == -1)
.
@divFloor(-5, 3) == -2
(@divFloor(a, b) * b) + @mod(a, b) == a
For a function that returns a possible error code, use @import("std").math.divFloor
.
See also:
@divTrunc(numerator: T, denominator: T) T
Truncated division. Rounds toward zero. For unsigned integers it is the same as numerator / denominator
. Caller guarantees denominator != 0
and !(@typeInfo(T) == .Int and T.is_signed and numerator == std.math.minInt(T) and denominator == -1)
.
@divTrunc(-5, 3) == -1
(@divTrunc(a, b) * b) + @rem(a, b) == a
For a function that returns a possible error code, use @import("std").math.divTrunc
.
See also:
@embedFile(comptime path: []const u8) *const [N:0]u8
This function returns a compile time constant pointer to null-terminated, fixed-size array with length equal to the byte count of the file given by path
. The contents of the array are the contents of the file. This is equivalent to a string literal with the file contents.
path
is absolute or relative to the current file, just like @import
.
See also:
@enumToInt(enum_or_tagged_union: anytype) anytype
Converts an enumeration value into its integer tag type. When a tagged union is passed, the tag value is used as the enumeration value.
If there is only one possible enum value, the result is a comptime_int
known at comptime.
See also:
@errorName(err: anyerror) [:0]const u8
This function returns the string representation of an error. The string representation of error.OutOfMem
is "OutOfMem"
.
If there are no calls to @errorName
in an entire application, or all calls have a compile-time known value for err
, then no error name table will be generated.
@errorReturnTrace() ?*builtin.StackTrace
If the binary is built with error return tracing, and this function is invoked in a function that calls a function with an error or error union return type, returns a stack trace object. Otherwise returns null.
@errorToInt(err: anytype) std.meta.Int(.unsigned, @sizeOf(anyerror) * 8)
Supports the following types:
Converts an error to the integer representation of an error.
It is generally recommended to avoid this cast, as the integer representation of an error is not stable across source code changes.
See also:
@errSetCast(comptime T: DestType, value: anytype) DestType
Converts an error value from one error set to another error set. Attempting to convert an error which is not in the destination error set results in safety-protected Undefined Behavior.
@export(declaration, comptime options: std.builtin.ExportOptions) void
Creates a symbol in the output object file.
declaration
must be one of two things:
x
) identifying a function or a variable.x.y
) looking up a function or a variable. This builtin can be called from a comptime block to conditionally export symbols. When declaration
is a function with the C calling convention and options.linkage
is Strong
, this is equivalent to the export
keyword used on a function:
comptime { @export(internalName, .{ .name = "foo", .linkage = .Strong }); } fn internalName() callconv(.C) void {}
$ zig build-obj test.zig
This is equivalent to:
export fn foo() void {}
$ zig build-obj test.zig
Note that even when using export
, @"foo"
syntax can be used to choose any string for the symbol name:
export fn @"A function name that is a complete sentence."() void {}
$ zig build-obj test.zig
When looking at the resulting object, you can see the symbol is used verbatim:
00000000000001f0 T A function name that is a complete sentence.
See also:
@extern(T: type, comptime options: std.builtin.ExternOptions) *T
Creates a reference to an external symbol in the output object file.
See also:
@fence(order: AtomicOrder)
The fence
function is used to introduce happens-before edges between operations.
AtomicOrder
can be found with @import("std").builtin.AtomicOrder
.
See also:
@field(lhs: anytype, comptime field_name: []const u8) (field)
Performs field access by a compile-time string. Works on both fields and declarations.
const std = @import("std"); const Point = struct { x: u32, y: u32, pub var z: u32 = 1; }; test "field access by string" { const expect = std.testing.expect; var p = Point{ .x = 0, .y = 0 }; @field(p, "x") = 4; @field(p, "y") = @field(p, "x") + 1; try expect(@field(p, "x") == 4); try expect(@field(p, "y") == 5); } test "decl access by string" { const expect = std.testing.expect; try expect(@field(Point, "z") == 1); @field(Point, "z") = 2; try expect(@field(Point, "z") == 2); }
$ zig test field_decl_access_by_string.zig 1/2 test "field access by string"... OK 2/2 test "decl access by string"... OK All 2 tests passed.
@fieldParentPtr(comptime ParentType: type, comptime field_name: []const u8, field_ptr: *T) *ParentType
Given a pointer to a field, returns the base pointer of a struct.
@floatCast(comptime DestType: type, value: anytype) DestType
Convert from one float type to another. This cast is safe, but may cause the numeric value to lose precision.
@floatToInt(comptime DestType: type, float: anytype) DestType
Converts the integer part of a floating point number to the destination type.
If the integer part of the floating point number cannot fit in the destination type, it invokes safety-checked Undefined Behavior.
See also:
@frame() *@Frame(func)
This function returns a pointer to the frame for a given function. This type can be coerced to anyframe->T
and to anyframe
, where T
is the return type of the function in scope.
This function does not mark a suspension point, but it does cause the function in scope to become an async function.
@Frame(func: anytype) type
This function returns the frame type of a function. This works for Async Functions as well as any function without a specific calling convention.
This type is suitable to be used as the return type of async which allows one to, for example, heap-allocate an async function frame:
const std = @import("std"); test "heap allocated frame" { const frame = try std.heap.page_allocator.create(@Frame(func)); frame.* = async func(); } fn func() void { suspend {} }
$ zig test heap_allocated_frame.zig 1/1 test "heap allocated frame"... OK All 1 tests passed.
@frameAddress() usize
This function returns the base pointer of the current stack frame.
The implications of this are target specific and not consistent across all platforms. The frame address may not be available in release mode due to aggressive optimizations.
This function is only valid within function scope.
@frameSize() usize
This is the same as @sizeOf(@Frame(func))
, where func
may be runtime-known.
This function is typically used in conjunction with @asyncCall.
@hasDecl(comptime Container: type, comptime name: []const u8) bool
Returns whether or not a struct, enum, or union has a declaration matching name
.
const std = @import("std"); const expect = std.testing.expect; const Foo = struct { nope: i32, pub var blah = "xxx"; const hi = 1; }; test "@hasDecl" { try expect(@hasDecl(Foo, "blah")); // Even though `hi` is private, @hasDecl returns true because this test is // in the same file scope as Foo. It would return false if Foo was declared // in a different file. try expect(@hasDecl(Foo, "hi")); // @hasDecl is for declarations; not fields. try expect(!@hasDecl(Foo, "nope")); try expect(!@hasDecl(Foo, "nope1234")); }
$ zig test hasDecl.zig 1/1 test "@hasDecl"... OK All 1 tests passed.
See also:
@hasField(comptime Container: type, comptime name: []const u8) bool
Returns whether the field name of a struct, union, or enum exists.
The result is a compile time constant.
It does not include functions, variables, or constants.
See also:
@import(comptime path: []u8) type
This function finds a zig file corresponding to path
and adds it to the build, if it is not already added.
Zig source files are implicitly structs, with a name equal to the file's basename with the extension truncated. @import
returns the struct type corresponding to the file.
Declarations which have the pub
keyword may be referenced from a different source file than the one they are declared in.
path
can be a relative path or it can be the name of a package. If it is a relative path, it is relative to the file that contains the @import
function call.
The following packages are always available:
@import("std")
- Zig Standard Library@import("builtin")
- Target-specific information The command zig build-exe --show-builtin
outputs the source to stdout for reference. See also:
@intCast(comptime DestType: type, int: anytype) DestType
Converts an integer to another integer while keeping the same numerical value. Attempting to convert a number which is out of range of the destination type results in safety-protected Undefined Behavior.
If T
is comptime_int
, then this is semantically equivalent to Type Coercion.
@intToEnum(comptime DestType: type, integer: anytype) DestType
Converts an integer into an enum value.
Attempting to convert an integer which represents no value in the chosen enum type invokes safety-checked Undefined Behavior.
See also:
@intToError(value: std.meta.Int(.unsigned, @sizeOf(anyerror) * 8)) anyerror
Converts from the integer representation of an error into The Global Error Set type.
It is generally recommended to avoid this cast, as the integer representation of an error is not stable across source code changes.
Attempting to convert an integer that does not correspond to any error results in safety-protected Undefined Behavior.
See also:
@intToFloat(comptime DestType: type, int: anytype) DestType
Converts an integer to the closest floating point representation. To convert the other way, use @floatToInt. This cast is always safe.
@intToPtr(comptime DestType: type, address: usize) DestType
Converts an integer to a pointer. To convert the other way, use @ptrToInt.
If the destination pointer type does not allow address zero and address
is zero, this invokes safety-checked Undefined Behavior.
@maximum(a: T, b: T) T
Returns the maximum value of a
and b
. This builtin accepts integers, floats, and vectors of either. In the latter case, the operation is performed element wise.
NaNs are handled as follows: if one of the operands of a (pairwise) operation is NaN, the other operand is returned. If both operands are NaN, NaN is returned.
See also:
@memcpy(noalias dest: [*]u8, noalias source: [*]const u8, byte_count: usize)
This function copies bytes from one region of memory to another. dest
and source
are both pointers and must not overlap.
This function is a low level intrinsic with no safety mechanisms. Most code should not use this function, instead using something like this:
for (source[0..byte_count]) |b, i| dest[i] = b;
The optimizer is intelligent enough to turn the above snippet into a memcpy.
There is also a standard library function for this:
const mem = @import("std").mem; mem.copy(u8, dest[0..byte_count], source[0..byte_count]);
@memset(dest: [*]u8, c: u8, byte_count: usize)
This function sets a region of memory to c
. dest
is a pointer.
This function is a low level intrinsic with no safety mechanisms. Most code should not use this function, instead using something like this:
for (dest[0..byte_count]) |*b| b.* = c;
The optimizer is intelligent enough to turn the above snippet into a memset.
There is also a standard library function for this:
const mem = @import("std").mem; mem.set(u8, dest, c);
@minimum(a: T, b: T) T
Returns the minimum value of a
and b
. This builtin accepts integers, floats, and vectors of either. In the latter case, the operation is performed element wise.
NaNs are handled as follows: if one of the operands of a (pairwise) operation is NaN, the other operand is returned. If both operands are NaN, NaN is returned.
See also:
@wasmMemorySize(index: u32) u32
This function returns the size of the Wasm memory identified by index
as an unsigned value in units of Wasm pages. Note that each Wasm page is 64KB in size.
This function is a low level intrinsic with no safety mechanisms usually useful for allocator designers targeting Wasm. So unless you are writing a new allocator from scratch, you should use something like @import("std").heap.WasmPageAllocator
.
See also:
@wasmMemoryGrow(index: u32, delta: u32) i32
This function increases the size of the Wasm memory identified by index
by delta
in units of unsigned number of Wasm pages. Note that each Wasm page is 64KB in size. On success, returns previous memory size; on failure, if the allocation fails, returns -1.
This function is a low level intrinsic with no safety mechanisms usually useful for allocator designers targeting Wasm. So unless you are writing a new allocator from scratch, you should use something like @import("std").heap.WasmPageAllocator
.
const std = @import("std"); const native_arch = @import("builtin").target.cpu.arch; const expect = std.testing.expect; test "@wasmMemoryGrow" { if (native_arch != .wasm32) return error.SkipZigTest; var prev = @wasmMemorySize(0); try expect(prev == @wasmMemoryGrow(0, 1)); try expect(prev + 1 == @wasmMemorySize(0)); }
$ zig test wasmMemoryGrow.zig 1/1 test "@wasmMemoryGrow"... test "@wasmMemoryGrow"... SKIP SKIP 0 passed; 1 skipped; 0 failed.
See also:
@mod(numerator: T, denominator: T) T
Modulus division. For unsigned integers this is the same as numerator % denominator
. Caller guarantees denominator > 0
.
@mod(-5, 3) == 1
(@divFloor(a, b) * b) + @mod(a, b) == a
For a function that returns an error code, see @import("std").math.mod
.
See also:
@mulWithOverflow(comptime T: type, a: T, b: T, result: *T) bool
Performs result.* = a * b
. If overflow or underflow occurs, stores the overflowed bits in result
and returns true
. If no overflow or underflow occurs, returns false
.
@panic(message: []const u8) noreturn
Invokes the panic handler function. By default the panic handler function calls the public panic
function exposed in the root source file, or if there is not one specified, the std.builtin.default_panic
function from std/builtin.zig
.
Generally it is better to use @import("std").debug.panic
. However, @panic
can be useful for 2 scenarios:
See also:
@popCount(comptime T: type, operand: T)
T
must be an integer type.
operand
may be an integer or vector.
Counts the number of bits set in an integer.
If operand
is a comptime-known integer, the return type is comptime_int
. Otherwise, the return type is an unsigned integer or vector of unsigned integers with the minimum number of bits that can represent the bit count of the integer type.
See also:
@prefetch(ptr: anytype, comptime options: std.builtin.PrefetchOptions)
This builtin tells the compiler to emit a prefetch instruction if supported by the target CPU. If the target CPU does not support the requested prefetch instruction, this builtin is a noop. This function has no effect on the behavior of the program, only on the performance characteristics.
The ptr
argument may be any pointer type and determines the memory address to prefetch. This function does not dereference the pointer, it is perfectly legal to pass a pointer to invalid memory to this function and no illegal behavior will result.
The options
argument is the following struct:
/// This data structure is used by the Zig language code generation and /// therefore must be kept in sync with the compiler implementation. pub const PrefetchOptions = struct { /// Whether the prefetch should prepare for a read or a write. rw: Rw = .read, /// 0 means no temporal locality. That is, the data can be immediately /// dropped from the cache after it is accessed. /// /// 3 means high temporal locality. That is, the data should be kept in /// the cache as it is likely to be accessed again soon. locality: u2 = 3, /// The cache that the prefetch should be preformed on. cache: Cache = .data, pub const Rw = enum { read, write, }; pub const Cache = enum { instruction, data, }; };
@ptrCast(comptime DestType: type, value: anytype) DestType
Converts a pointer of one type to a pointer of another type.
Optional Pointers are allowed. Casting an optional pointer which is null to a non-optional pointer invokes safety-checked Undefined Behavior.
@ptrToInt(value: anytype) usize
Converts value
to a usize
which is the address of the pointer. value
can be one of these types:
*T
?*T
fn()
?fn()
To convert the other way, use @intToPtr
@rem(numerator: T, denominator: T) T
Remainder division. For unsigned integers this is the same as numerator % denominator
. Caller guarantees denominator > 0
.
@rem(-5, 3) == -2
(@divTrunc(a, b) * b) + @rem(a, b) == a
For a function that returns an error code, see @import("std").math.rem
.
See also:
@returnAddress() usize
This function returns the address of the next machine code instruction that will be executed when the current function returns.
The implications of this are target specific and not consistent across all platforms.
This function is only valid within function scope. If the function gets inlined into a calling function, the returned address will apply to the calling function.
@select(comptime T: type, pred: std.meta.Vector(len, bool), a: std.meta.Vector(len, T), b: std.meta.Vector(len, T)) std.meta.Vector(len, T)
Selects values element-wise from a
or b
based on pred
. If pred[i]
is true
, the corresponding element in the result will be a[i]
and otherwise b[i]
.
See also:
@setAlignStack(comptime alignment: u29)
Ensures that a function will have a stack alignment of at least alignment
bytes.
@setCold(is_cold: bool)
Tells the optimizer that a function is rarely called.
@setEvalBranchQuota(new_quota: u32)
Changes the maximum number of backwards branches that compile-time code execution can use before giving up and making a compile error.
If the new_quota
is smaller than the default quota (1000
) or a previously explicitly set quota, it is ignored.
Example:
test "foo" { comptime { var i = 0; while (i < 1001) : (i += 1) {} } }
$ zig test test.zig ./docgen_tmp/test.zig:4:9: error: evaluation exceeded 1000 backwards branches while (i < 1001) : (i += 1) {} ^ ./docgen_tmp/test.zig:1:12: note: referenced here test "foo" { ^
Now we use @setEvalBranchQuota
:
test "foo" { comptime { @setEvalBranchQuota(1001); var i = 0; while (i < 1001) : (i += 1) {} } }
$ zig test setEvalBranchQuota.zig 1/1 test "foo"... OK All 1 tests passed.
See also:
@setFloatMode(mode: @import("std").builtin.FloatMode)
Sets the floating point mode of the current scope. Possible values are:
pub const FloatMode = enum { Strict, Optimized, };
Strict
(default) - Floating point operations follow strict IEEE compliance. Optimized
- Floating point operations may do all of the following: -ffast-math
in GCC. The floating point mode is inherited by child scopes, and can be overridden in any scope. You can set the floating point mode in a struct or module scope by using a comptime block.
See also:
@setRuntimeSafety(safety_on: bool) void
Sets whether runtime safety checks are enabled for the scope that contains the function call.
test "@setRuntimeSafety" { // The builtin applies to the scope that it is called in. So here, integer overflow // will not be caught in ReleaseFast and ReleaseSmall modes: // var x: u8 = 255; // x += 1; // undefined behavior in ReleaseFast/ReleaseSmall modes. { // However this block has safety enabled, so safety checks happen here, // even in ReleaseFast and ReleaseSmall modes. @setRuntimeSafety(true); var x: u8 = 255; x += 1; { // The value can be overridden at any scope. So here integer overflow // would not be caught in any build mode. @setRuntimeSafety(false); // var x: u8 = 255; // x += 1; // undefined behavior in all build modes. } } }
$ zig test test.zig -OReleaseFast 1/1 test "@setRuntimeSafety"... thread 797125 panic: integer overflow error: the following test command crashed: docgen_tmp/zig-cache/o/7b3f38578dd3c68a8e61771c6005cfea/test /home/andy/Downloads/zig/build-release/zig
Note: it is planned to replace @setRuntimeSafety
with @optimizeFor
@shlExact(value: T, shift_amt: Log2T) T
Performs the left shift operation (<<
). For unsigned integers, the result is undefined if any 1 bits are shifted out. For signed integers, the result is undefined if any bits that disagree with the resultant sign bit are shifted out.
The type of shift_amt
is an unsigned integer with log2(T.bit_count)
bits. This is because shift_amt >= T.bit_count
is undefined behavior.
See also:
@shlWithOverflow(comptime T: type, a: T, shift_amt: Log2T, result: *T) bool
Performs result.* = a << b
. If overflow or underflow occurs, stores the overflowed bits in result
and returns true
. If no overflow or underflow occurs, returns false
.
The type of shift_amt
is an unsigned integer with log2(T.bit_count)
bits. This is because shift_amt >= T.bit_count
is undefined behavior.
See also:
@shrExact(value: T, shift_amt: Log2T) T
Performs the right shift operation (>>
). Caller guarantees that the shift will not shift any 1 bits out.
The type of shift_amt
is an unsigned integer with log2(T.bit_count)
bits. This is because shift_amt >= T.bit_count
is undefined behavior.
See also:
@shuffle(comptime E: type, a: std.meta.Vector(a_len, E), b: std.meta.Vector(b_len, E), comptime mask: std.meta.Vector(mask_len, i32)) std.meta.Vector(mask_len, E)
Constructs a new vector by selecting elements from a
and b
based on mask
.
Each element in mask
selects an element from either a
or b
. Positive numbers select from a
starting at 0. Negative values select from b
, starting at -1
and going down. It is recommended to use the ~
operator from indexes from b
so that both indexes can start from 0
(i.e. ~@as(i32, 0)
is -1
).
For each element of mask
, if it or the selected value from a
or b
is undefined
, then the resulting element is undefined
.
a_len
and b_len
may differ in length. Out-of-bounds element indexes in mask
result in compile errors.
If a
or b
is undefined
, it is equivalent to a vector of all undefined
with the same length as the other vector. If both vectors are undefined
, @shuffle
returns a vector with all elements undefined
.
E
must be an integer, float, pointer, or bool
. The mask may be any vector length, and its length determines the result length.
const std = @import("std"); const Vector = std.meta.Vector; const expect = std.testing.expect; test "vector @shuffle" { const a: Vector(7, u8) = [_]u8{ 'o', 'l', 'h', 'e', 'r', 'z', 'w' }; const b: Vector(4, u8) = [_]u8{ 'w', 'd', '!', 'x' }; // To shuffle within a single vector, pass undefined as the second argument. // Notice that we can re-order, duplicate, or omit elements of the input vector const mask1: Vector(5, i32) = [_]i32{ 2, 3, 1, 1, 0 }; const res1: Vector(5, u8) = @shuffle(u8, a, undefined, mask1); try expect(std.mem.eql(u8, &@as([5]u8, res1), "hello")); // Combining two vectors const mask2: Vector(6, i32) = [_]i32{ -1, 0, 4, 1, -2, -3 }; const res2: Vector(6, u8) = @shuffle(u8, a, b, mask2); try expect(std.mem.eql(u8, &@as([6]u8, res2), "world!")); }
$ zig test vector_shuffle.zig 1/1 test "vector @shuffle"... OK All 1 tests passed.
See also:
@sizeOf(comptime T: type) comptime_int
This function returns the number of bytes it takes to store T
in memory. The result is a target-specific compile time constant.
This size may contain padding bytes. If there were two consecutive T in memory, this would be the offset in bytes between element at index 0 and the element at index 1. For integer, consider whether you want to use @sizeOf(T)
or @typeInfo(T).Int.bits
.
This function measures the size at runtime. For types that are disallowed at runtime, such as comptime_int
and type
, the result is 0
.
See also:
@splat(comptime len: u32, scalar: anytype) std.meta.Vector(len, @TypeOf(scalar))
Produces a vector of length len
where each element is the value scalar
:
const std = @import("std"); const expect = std.testing.expect; test "vector @splat" { const scalar: u32 = 5; const result = @splat(4, scalar); comptime try expect(@TypeOf(result) == std.meta.Vector(4, u32)); try expect(std.mem.eql(u32, &@as([4]u32, result), &[_]u32{ 5, 5, 5, 5 })); }
$ zig test vector_splat.zig 1/1 test "vector @splat"... OK All 1 tests passed.
scalar
must be an integer, bool, float, or pointer.
See also:
@reduce(comptime op: std.builtin.ReduceOp, value: anytype) std.meta.Child(value)
Transforms a vector into a scalar value by performing a sequential horizontal reduction of its elements using the specified operator op
.
Not every operator is available for every vector element type:
.And
, .Or
, .Xor
are available for bool
vectors,.Min
, .Max
, .Add
, .Mul
are available for floating point vectors, Note that .Add
and .Mul
reductions on integral types are wrapping; when applied on floating point types the operation associativity is preserved, unless the float mode is set to Optimized
.
const std = @import("std"); const expect = std.testing.expect; test "vector @reduce" { const value: std.meta.Vector(4, i32) = [_]i32{ 1, -1, 1, -1 }; const result = value > @splat(4, @as(i32, 0)); // result is { true, false, true, false }; comptime try expect(@TypeOf(result) == std.meta.Vector(4, bool)); const is_all_true = @reduce(.And, result); comptime try expect(@TypeOf(is_all_true) == bool); try expect(is_all_true == false); }
$ zig test vector_reduce.zig 1/1 test "vector @reduce"... OK All 1 tests passed.
See also:
@src() std.builtin.SourceLocation
Returns a SourceLocation
struct representing the function's name and location in the source code. This must be called in a function.
const std = @import("std"); const expect = std.testing.expect; test "@src" { try doTheTest(); } fn doTheTest() !void { const src = @src(); try expect(src.line == 9); try expect(src.column == 17); try expect(std.mem.endsWith(u8, src.fn_name, "doTheTest")); try expect(std.mem.endsWith(u8, src.file, "source_location.zig")); }
$ zig test source_location.zig 1/1 test "@src"... OK All 1 tests passed.
@sqrt(value: anytype) @TypeOf(value)
Performs the square root of a floating point number. Uses a dedicated hardware instruction when available.
Supports Floats and Vectors of floats, with the caveat that some float operations are not yet implemented for all float types.
@sin(value: anytype) @TypeOf(value)
Sine trigonometric function on a floating point number. Uses a dedicated hardware instruction when available.
Supports Floats and Vectors of floats, with the caveat that some float operations are not yet implemented for all float types.
@cos(value: anytype) @TypeOf(value)
Cosine trigonometric function on a floating point number. Uses a dedicated hardware instruction when available.
Supports Floats and Vectors of floats, with the caveat that some float operations are not yet implemented for all float types.
@exp(value: anytype) @TypeOf(value)
Base-e exponential function on a floating point number. Uses a dedicated hardware instruction when available.
Supports Floats and Vectors of floats, with the caveat that some float operations are not yet implemented for all float types.
@exp2(value: anytype) @TypeOf(value)
Base-2 exponential function on a floating point number. Uses a dedicated hardware instruction when available.
Supports Floats and Vectors of floats, with the caveat that some float operations are not yet implemented for all float types.
@log(value: anytype) @TypeOf(value)
Returns the natural logarithm of a floating point number. Uses a dedicated hardware instruction when available.
Supports Floats and Vectors of floats, with the caveat that some float operations are not yet implemented for all float types.
@log2(value: anytype) @TypeOf(value)
Returns the logarithm to the base 2 of a floating point number. Uses a dedicated hardware instruction when available.
Supports Floats and Vectors of floats, with the caveat that some float operations are not yet implemented for all float types.
@log10(value: anytype) @TypeOf(value)
Returns the logarithm to the base 10 of a floating point number. Uses a dedicated hardware instruction when available.
Supports Floats and Vectors of floats, with the caveat that some float operations are not yet implemented for all float types.
@fabs(value: anytype) @TypeOf(value)
Returns the absolute value of a floating point number. Uses a dedicated hardware instruction when available.
Supports Floats and Vectors of floats, with the caveat that some float operations are not yet implemented for all float types.
@floor(value: anytype) @TypeOf(value)
Returns the largest integral value not greater than the given floating point number. Uses a dedicated hardware instruction when available.
Supports Floats and Vectors of floats, with the caveat that some float operations are not yet implemented for all float types.
@ceil(value: anytype) @TypeOf(value)
Returns the smallest integral value not less than the given floating point number. Uses a dedicated hardware instruction when available.
Supports Floats and Vectors of floats, with the caveat that some float operations are not yet implemented for all float types.
@trunc(value: anytype) @TypeOf(value)
Rounds the given floating point number to an integer, towards zero. Uses a dedicated hardware instruction when available.
Supports Floats and Vectors of floats, with the caveat that some float operations are not yet implemented for all float types.
@round(value: anytype) @TypeOf(value)
Rounds the given floating point number to an integer, away from zero. Uses a dedicated hardware instruction when available.
Supports Floats and Vectors of floats, with the caveat that some float operations are not yet implemented for all float types.
@subWithOverflow(comptime T: type, a: T, b: T, result: *T) bool
Performs result.* = a - b
. If overflow or underflow occurs, stores the overflowed bits in result
and returns true
. If no overflow or underflow occurs, returns false
.
@tagName(value: anytype) [:0]const u8
Converts an enum value or union value to a string literal representing the name.
If the enum is non-exhaustive and the tag value does not map to a name, it invokes safety-checked Undefined Behavior.
@This() type
Returns the innermost struct, enum, or union that this function call is inside. This can be useful for an anonymous struct that needs to refer to itself:
const std = @import("std"); const expect = std.testing.expect; test "@This()" { var items = [_]i32{ 1, 2, 3, 4 }; const list = List(i32){ .items = items[0..] }; try expect(list.length() == 4); } fn List(comptime T: type) type { return struct { const Self = @This(); items: []T, fn length(self: Self) usize { return self.items.len; } }; }
$ zig test this_innermost.zig 1/1 test "@This()"... OK All 1 tests passed.
When @This()
is used at file scope, it returns a reference to the struct that corresponds to the current file.
@truncate(comptime T: type, integer: anytype) T
This function truncates bits from an integer type, resulting in a smaller or same-sized integer type.
The following produces safety-checked Undefined Behavior:
test "integer cast panic" { var a: u16 = 0xabcd; var b: u8 = @intCast(u8, a); _ = b; }
$ zig test test.zig 1/1 test "integer cast panic"... thread 797343 panic: integer cast truncated bits /home/andy/Downloads/zig/docgen_tmp/test.zig:3:17: 0x207a05 in test "integer cast panic" (test) var b: u8 = @intCast(u8, a); ^ /home/andy/Downloads/zig/lib/std/special/test_runner.zig:80:28: 0x22f413 in std.special.main (test) } else test_fn.func(); ^ /home/andy/Downloads/zig/lib/std/start.zig:543:22: 0x227e0c in std.start.callMain (test) root.main(); ^ /home/andy/Downloads/zig/lib/std/start.zig:495:12: 0x20922e in std.start.callMainWithArgs (test) return @call(.{ .modifier = .always_inline }, callMain, .{}); ^ /home/andy/Downloads/zig/lib/std/start.zig:409:17: 0x2082c6 in std.start.posixCallMainAndExit (test) std.os.exit(@call(.{ .modifier = .always_inline }, callMainWithArgs, .{ argc, argv, envp })); ^ /home/andy/Downloads/zig/lib/std/start.zig:322:5: 0x2080d2 in std.start._start (test) @call(.{ .modifier = .never_inline }, posixCallMainAndExit, .{}); ^ error: the following test command crashed: docgen_tmp/zig-cache/o/8e4964e05ddaf866e77360a551b3c05b/test /home/andy/Downloads/zig/build-release/zig
However this is well defined and working code:
const std = @import("std"); const expect = std.testing.expect; test "integer truncation" { var a: u16 = 0xabcd; var b: u8 = @truncate(u8, a); try expect(b == 0xcd); }
$ zig test truncate.zig 1/1 test "integer truncation"... OK All 1 tests passed.
This function always truncates the significant bits of the integer, regardless of endianness on the target platform.
@Type(comptime info: std.builtin.TypeInfo) type
This function is the inverse of @typeInfo. It reifies type information into a type
.
It is available for the following types:
type
noreturn
void
bool
65535
.comptime_int
comptime_float
@TypeOf(undefined)
@TypeOf(null)
anyframe
For these types, @Type
is not available:
@typeInfo(comptime T: type) std.builtin.TypeInfo
Provides type reflection.
For structs, unions, enums, and error sets, the fields are guaranteed to be in the same order as declared. For declarations, the order is unspecified.
@typeName(T: type) *const [N:0]u8
This function returns the string representation of a type, as an array. It is equivalent to a string literal of the type name.
@TypeOf(...) type
@TypeOf
is a special builtin function that takes any (nonzero) number of expressions as parameters and returns the type of the result, using Peer Type Resolution.
The expressions are evaluated, however they are guaranteed to have no runtime side-effects:
const std = @import("std"); const expect = std.testing.expect; test "no runtime side effects" { var data: i32 = 0; const T = @TypeOf(foo(i32, &data)); comptime try expect(T == i32); try expect(data == 0); } fn foo(comptime T: type, ptr: *T) T { ptr.* += 1; return ptr.*; }
$ zig test no_runtime_side_effects.zig 1/1 test "no runtime side effects"... OK All 1 tests passed.
@unionInit(comptime Union: type, comptime active_field_name: []const u8, init_expr) Union
This is the same thing as union initialization syntax, except that the field name is a comptime-known value rather than an identifier token.
@unionInit
forwards its result location to init_expr
.
Zig has four build modes:
To add standard build options to a build.zig
file:
const Builder = @import("std").build.Builder; pub fn build(b: *Builder) void { const exe = b.addExecutable("example", "example.zig"); exe.setBuildMode(b.standardReleaseOptions()); b.default_step.dependOn(&exe.step); }
This causes these options to be available:
$ zig build-exe example.zig
$ zig build-exe example.zig -O ReleaseFast
$ zig build-exe example.zig -O ReleaseSafe
$ zig build-exe example.zig -O ReleaseSmall
See also:
Zig has a compile option --single-threaded which has the following effects:
@import("builtin").single_threaded
becomes true
and therefore various userland APIs which read this variable become more efficient. For example std.Mutex
becomes an empty data structure and all of its functions become no-ops.Zig has many instances of undefined behavior. If undefined behavior is detected at compile-time, Zig emits a compile error and refuses to continue. Most undefined behavior that cannot be detected at compile-time can be detected at runtime. In these cases, Zig has safety checks. Safety checks can be disabled on a per-block basis with @setRuntimeSafety. The ReleaseFast and ReleaseSmall build modes disable all safety checks (except where overridden by @setRuntimeSafety) in order to facilitate optimizations.
When a safety check fails, Zig crashes with a stack trace, like this:
test "safety check" { unreachable; }
$ zig test test.zig 1/1 test "safety check"... thread 797490 panic: reached unreachable code /home/andy/Downloads/zig/docgen_tmp/test.zig:2:5: 0x2079da in test "safety check" (test) unreachable; ^ /home/andy/Downloads/zig/lib/std/special/test_runner.zig:80:28: 0x22f3e3 in std.special.main (test) } else test_fn.func(); ^ /home/andy/Downloads/zig/lib/std/start.zig:543:22: 0x227ddc in std.start.callMain (test) root.main(); ^ /home/andy/Downloads/zig/lib/std/start.zig:495:12: 0x2091fe in std.start.callMainWithArgs (test) return @call(.{ .modifier = .always_inline }, callMain, .{}); ^ /home/andy/Downloads/zig/lib/std/start.zig:409:17: 0x208296 in std.start.posixCallMainAndExit (test) std.os.exit(@call(.{ .modifier = .always_inline }, callMainWithArgs, .{ argc, argv, envp })); ^ /home/andy/Downloads/zig/lib/std/start.zig:322:5: 0x2080a2 in std.start._start (test) @call(.{ .modifier = .never_inline }, posixCallMainAndExit, .{}); ^ error: the following test command crashed: docgen_tmp/zig-cache/o/8e4964e05ddaf866e77360a551b3c05b/test /home/andy/Downloads/zig/build-release/zig
At compile-time:
comptime { assert(false); } fn assert(ok: bool) void { if (!ok) unreachable; // assertion failure }
$ zig test test.zig ./docgen_tmp/test.zig:5:14: error: reached unreachable code if (!ok) unreachable; // assertion failure ^ ./docgen_tmp/test.zig:2:11: note: called from here assert(false); ^ ./docgen_tmp/test.zig:1:10: note: called from here comptime { ^ ./docgen_tmp/test.zig:2:11: note: referenced here assert(false); ^
At runtime:
const std = @import("std"); pub fn main() void { std.debug.assert(false); }
$ zig build-exe test.zig $ ./test thread 797551 panic: reached unreachable code /home/andy/Downloads/zig/lib/std/debug.zig:224:14: 0x204e3b in std.debug.assert (test) if (!ok) unreachable; // assertion failure ^ /home/andy/Downloads/zig/docgen_tmp/test.zig:4:21: 0x22ce2a in main (test) std.debug.assert(false); ^ /home/andy/Downloads/zig/lib/std/start.zig:543:22: 0x225bbc in std.start.callMain (test) root.main(); ^ /home/andy/Downloads/zig/lib/std/start.zig:495:12: 0x206fbe in std.start.callMainWithArgs (test) return @call(.{ .modifier = .always_inline }, callMain, .{}); ^ /home/andy/Downloads/zig/lib/std/start.zig:409:17: 0x206056 in std.start.posixCallMainAndExit (test) std.os.exit(@call(.{ .modifier = .always_inline }, callMainWithArgs, .{ argc, argv, envp })); ^ /home/andy/Downloads/zig/lib/std/start.zig:322:5: 0x205e62 in std.start._start (test) @call(.{ .modifier = .never_inline }, posixCallMainAndExit, .{}); ^ (process terminated by signal)
At compile-time:
comptime { const array: [5]u8 = "hello".*; const garbage = array[5]; _ = garbage; }
$ zig test test.zig ./docgen_tmp/test.zig:3:26: error: index 5 outside array of size 5 const garbage = array[5]; ^
At runtime:
pub fn main() void { var x = foo("hello"); _ = x; } fn foo(x: []const u8) u8 { return x[5]; }
$ zig build-exe test.zig $ ./test thread 797611 panic: index out of bounds /home/andy/Downloads/zig/docgen_tmp/test.zig:7:13: 0x2344e9 in foo (test) return x[5]; ^ /home/andy/Downloads/zig/docgen_tmp/test.zig:2:16: 0x22ce36 in main (test) var x = foo("hello"); ^ /home/andy/Downloads/zig/lib/std/start.zig:543:22: 0x225bbc in std.start.callMain (test) root.main(); ^ /home/andy/Downloads/zig/lib/std/start.zig:495:12: 0x206fbe in std.start.callMainWithArgs (test) return @call(.{ .modifier = .always_inline }, callMain, .{}); ^ /home/andy/Downloads/zig/lib/std/start.zig:409:17: 0x206056 in std.start.posixCallMainAndExit (test) std.os.exit(@call(.{ .modifier = .always_inline }, callMainWithArgs, .{ argc, argv, envp })); ^ /home/andy/Downloads/zig/lib/std/start.zig:322:5: 0x205e62 in std.start._start (test) @call(.{ .modifier = .never_inline }, posixCallMainAndExit, .{}); ^ (process terminated by signal)
At compile-time:
comptime { const value: i32 = -1; const unsigned = @intCast(u32, value); _ = unsigned; }
$ zig test test.zig ./docgen_tmp/test.zig:3:22: error: attempt to cast negative value to unsigned integer const unsigned = @intCast(u32, value); ^
At runtime:
const std = @import("std"); pub fn main() void { var value: i32 = -1; var unsigned = @intCast(u32, value); std.debug.print("value: {}\n", .{unsigned}); }
$ zig build-exe test.zig $ ./test thread 797672 panic: attempt to cast negative value to unsigned integer /home/andy/Downloads/zig/docgen_tmp/test.zig:5:20: 0x22cf27 in main (test) var unsigned = @intCast(u32, value); ^ /home/andy/Downloads/zig/lib/std/start.zig:543:22: 0x225c7c in std.start.callMain (test) root.main(); ^ /home/andy/Downloads/zig/lib/std/start.zig:495:12: 0x20707e in std.start.callMainWithArgs (test) return @call(.{ .modifier = .always_inline }, callMain, .{}); ^ /home/andy/Downloads/zig/lib/std/start.zig:409:17: 0x206116 in std.start.posixCallMainAndExit (test) std.os.exit(@call(.{ .modifier = .always_inline }, callMainWithArgs, .{ argc, argv, envp })); ^ /home/andy/Downloads/zig/lib/std/start.zig:322:5: 0x205f22 in std.start._start (test) @call(.{ .modifier = .never_inline }, posixCallMainAndExit, .{}); ^ (process terminated by signal)
To obtain the maximum value of an unsigned integer, use std.math.maxInt
.
At compile-time:
comptime { const spartan_count: u16 = 300; const byte = @intCast(u8, spartan_count); _ = byte; }
$ zig test test.zig ./docgen_tmp/test.zig:3:18: error: cast from 'u16' to 'u8' truncates bits const byte = @intCast(u8, spartan_count); ^
At runtime:
const std = @import("std"); pub fn main() void { var spartan_count: u16 = 300; const byte = @intCast(u8, spartan_count); std.debug.print("value: {}\n", .{byte}); }
$ zig build-exe test.zig $ ./test thread 797733 panic: integer cast truncated bits /home/andy/Downloads/zig/docgen_tmp/test.zig:5:18: 0x22cf2c in main (test) const byte = @intCast(u8, spartan_count); ^ /home/andy/Downloads/zig/lib/std/start.zig:543:22: 0x225c7c in std.start.callMain (test) root.main(); ^ /home/andy/Downloads/zig/lib/std/start.zig:495:12: 0x20707e in std.start.callMainWithArgs (test) return @call(.{ .modifier = .always_inline }, callMain, .{}); ^ /home/andy/Downloads/zig/lib/std/start.zig:409:17: 0x206116 in std.start.posixCallMainAndExit (test) std.os.exit(@call(.{ .modifier = .always_inline }, callMainWithArgs, .{ argc, argv, envp })); ^ /home/andy/Downloads/zig/lib/std/start.zig:322:5: 0x205f22 in std.start._start (test) @call(.{ .modifier = .never_inline }, posixCallMainAndExit, .{}); ^ (process terminated by signal)
To truncate bits, use @truncate.
The following operators can cause integer overflow:
+
(addition)-
(subtraction)-
(negation)*
(multiplication)/
(division)Example with addition at compile-time:
comptime { var byte: u8 = 255; byte += 1; }
$ zig test test.zig ./docgen_tmp/test.zig:3:10: error: operation caused overflow byte += 1; ^
At runtime:
const std = @import("std"); pub fn main() void { var byte: u8 = 255; byte += 1; std.debug.print("value: {}\n", .{byte}); }
$ zig build-exe test.zig $ ./test thread 797794 panic: integer overflow /home/andy/Downloads/zig/docgen_tmp/test.zig:5:10: 0x22cf0f in main (test) byte += 1; ^ /home/andy/Downloads/zig/lib/std/start.zig:543:22: 0x225c7c in std.start.callMain (test) root.main(); ^ /home/andy/Downloads/zig/lib/std/start.zig:495:12: 0x20707e in std.start.callMainWithArgs (test) return @call(.{ .modifier = .always_inline }, callMain, .{}); ^ /home/andy/Downloads/zig/lib/std/start.zig:409:17: 0x206116 in std.start.posixCallMainAndExit (test) std.os.exit(@call(.{ .modifier = .always_inline }, callMainWithArgs, .{ argc, argv, envp })); ^ /home/andy/Downloads/zig/lib/std/start.zig:322:5: 0x205f22 in std.start._start (test) @call(.{ .modifier = .never_inline }, posixCallMainAndExit, .{}); ^ (process terminated by signal)
These functions provided by the standard library return possible errors.
@import("std").math.add
@import("std").math.sub
@import("std").math.mul
@import("std").math.divTrunc
@import("std").math.divFloor
@import("std").math.divExact
@import("std").math.shl
Example of catching an overflow for addition:
const math = @import("std").math; const print = @import("std").debug.print; pub fn main() !void { var byte: u8 = 255; byte = if (math.add(u8, byte, 1)) |result| result else |err| { print("unable to add one: {s}\n", .{@errorName(err)}); return err; }; print("result: {}\n", .{byte}); }
$ zig build-exe test.zig $ ./test unable to add one: Overflow error: Overflow /home/andy/Downloads/zig/lib/std/math.zig:463:5: 0x234a3b in std.math.add (test) return if (@addWithOverflow(T, a, b, &answer)) error.Overflow else answer; ^ /home/andy/Downloads/zig/docgen_tmp/test.zig:8:9: 0x22d294 in main (test) return err; ^
These builtins return a bool
of whether or not overflow occurred, as well as returning the overflowed bits:
Example of @addWithOverflow:
const print = @import("std").debug.print; pub fn main() void { var byte: u8 = 255; var result: u8 = undefined; if (@addWithOverflow(u8, byte, 10, &result)) { print("overflowed result: {}\n", .{result}); } else { print("result: {}\n", .{result}); } }
$ zig build-exe test.zig $ ./test overflowed result: 9
These operations have guaranteed wraparound semantics.
+%
(wraparound addition)-%
(wraparound subtraction)-%
(wraparound negation)*%
(wraparound multiplication)const std = @import("std"); const expect = std.testing.expect; const minInt = std.math.minInt; const maxInt = std.math.maxInt; test "wraparound addition and subtraction" { const x: i32 = maxInt(i32); const min_val = x +% 1; try expect(min_val == minInt(i32)); const max_val = min_val -% 1; try expect(max_val == maxInt(i32)); }
$ zig test wraparound_semantics.zig 1/1 test "wraparound addition and subtraction"... OK All 1 tests passed.
At compile-time:
comptime { const x = @shlExact(@as(u8, 0b01010101), 2); _ = x; }
$ zig test test.zig ./docgen_tmp/test.zig:2:15: error: operation caused overflow const x = @shlExact(@as(u8, 0b01010101), 2); ^
At runtime:
const std = @import("std"); pub fn main() void { var x: u8 = 0b01010101; var y = @shlExact(x, 2); std.debug.print("value: {}\n", .{y}); }
$ zig build-exe test.zig $ ./test thread 797961 panic: left shift overflowed bits /home/andy/Downloads/zig/docgen_tmp/test.zig:5:13: 0x22cf5b in main (test) var y = @shlExact(x, 2); ^ /home/andy/Downloads/zig/lib/std/start.zig:543:22: 0x225cac in std.start.callMain (test) root.main(); ^ /home/andy/Downloads/zig/lib/std/start.zig:495:12: 0x2070ae in std.start.callMainWithArgs (test) return @call(.{ .modifier = .always_inline }, callMain, .{}); ^ /home/andy/Downloads/zig/lib/std/start.zig:409:17: 0x206146 in std.start.posixCallMainAndExit (test) std.os.exit(@call(.{ .modifier = .always_inline }, callMainWithArgs, .{ argc, argv, envp })); ^ /home/andy/Downloads/zig/lib/std/start.zig:322:5: 0x205f52 in std.start._start (test) @call(.{ .modifier = .never_inline }, posixCallMainAndExit, .{}); ^ (process terminated by signal)
At compile-time:
comptime { const x = @shrExact(@as(u8, 0b10101010), 2); _ = x; }
$ zig test test.zig ./docgen_tmp/test.zig:2:15: error: exact shift shifted out 1 bits const x = @shrExact(@as(u8, 0b10101010), 2); ^
At runtime:
const std = @import("std"); pub fn main() void { var x: u8 = 0b10101010; var y = @shrExact(x, 2); std.debug.print("value: {}\n", .{y}); }
$ zig build-exe test.zig $ ./test thread 798021 panic: right shift overflowed bits /home/andy/Downloads/zig/docgen_tmp/test.zig:5:13: 0x22cf6b in main (test) var y = @shrExact(x, 2); ^ /home/andy/Downloads/zig/lib/std/start.zig:543:22: 0x225cbc in std.start.callMain (test) root.main(); ^ /home/andy/Downloads/zig/lib/std/start.zig:495:12: 0x2070be in std.start.callMainWithArgs (test) return @call(.{ .modifier = .always_inline }, callMain, .{}); ^ /home/andy/Downloads/zig/lib/std/start.zig:409:17: 0x206156 in std.start.posixCallMainAndExit (test) std.os.exit(@call(.{ .modifier = .always_inline }, callMainWithArgs, .{ argc, argv, envp })); ^ /home/andy/Downloads/zig/lib/std/start.zig:322:5: 0x205f62 in std.start._start (test) @call(.{ .modifier = .never_inline }, posixCallMainAndExit, .{}); ^ (process terminated by signal)
At compile-time:
comptime { const a: i32 = 1; const b: i32 = 0; const c = a / b; _ = c; }
$ zig test test.zig ./docgen_tmp/test.zig:4:17: error: division by zero const c = a / b; ^
At runtime:
const std = @import("std"); pub fn main() void { var a: u32 = 1; var b: u32 = 0; var c = a / b; std.debug.print("value: {}\n", .{c}); }
$ zig build-exe test.zig $ ./test thread 798081 panic: division by zero /home/andy/Downloads/zig/docgen_tmp/test.zig:6:15: 0x22cf19 in main (test) var c = a / b; ^ /home/andy/Downloads/zig/lib/std/start.zig:543:22: 0x225c7c in std.start.callMain (test) root.main(); ^ /home/andy/Downloads/zig/lib/std/start.zig:495:12: 0x20707e in std.start.callMainWithArgs (test) return @call(.{ .modifier = .always_inline }, callMain, .{}); ^ /home/andy/Downloads/zig/lib/std/start.zig:409:17: 0x206116 in std.start.posixCallMainAndExit (test) std.os.exit(@call(.{ .modifier = .always_inline }, callMainWithArgs, .{ argc, argv, envp })); ^ /home/andy/Downloads/zig/lib/std/start.zig:322:5: 0x205f22 in std.start._start (test) @call(.{ .modifier = .never_inline }, posixCallMainAndExit, .{}); ^ (process terminated by signal)
At compile-time:
comptime { const a: i32 = 10; const b: i32 = 0; const c = a % b; _ = c; }
$ zig test test.zig ./docgen_tmp/test.zig:4:17: error: division by zero const c = a % b; ^
At runtime:
const std = @import("std"); pub fn main() void { var a: u32 = 10; var b: u32 = 0; var c = a % b; std.debug.print("value: {}\n", .{c}); }
$ zig build-exe test.zig $ ./test thread 798142 panic: remainder division by zero or negative value /home/andy/Downloads/zig/docgen_tmp/test.zig:6:15: 0x22cf3b in main (test) var c = a % b; ^ /home/andy/Downloads/zig/lib/std/start.zig:543:22: 0x225c7c in std.start.callMain (test) root.main(); ^ /home/andy/Downloads/zig/lib/std/start.zig:495:12: 0x20707e in std.start.callMainWithArgs (test) return @call(.{ .modifier = .always_inline }, callMain, .{}); ^ /home/andy/Downloads/zig/lib/std/start.zig:409:17: 0x206116 in std.start.posixCallMainAndExit (test) std.os.exit(@call(.{ .modifier = .always_inline }, callMainWithArgs, .{ argc, argv, envp })); ^ /home/andy/Downloads/zig/lib/std/start.zig:322:5: 0x205f22 in std.start._start (test) @call(.{ .modifier = .never_inline }, posixCallMainAndExit, .{}); ^ (process terminated by signal)
At compile-time:
comptime { const a: u32 = 10; const b: u32 = 3; const c = @divExact(a, b); _ = c; }
$ zig test test.zig ./docgen_tmp/test.zig:4:15: error: exact division had a remainder const c = @divExact(a, b); ^
At runtime:
const std = @import("std"); pub fn main() void { var a: u32 = 10; var b: u32 = 3; var c = @divExact(a, b); std.debug.print("value: {}\n", .{c}); }
$ zig build-exe test.zig $ ./test thread 798202 panic: exact division produced remainder /home/andy/Downloads/zig/docgen_tmp/test.zig:6:13: 0x22cf5d in main (test) var c = @divExact(a, b); ^ /home/andy/Downloads/zig/lib/std/start.zig:543:22: 0x225c7c in std.start.callMain (test) root.main(); ^ /home/andy/Downloads/zig/lib/std/start.zig:495:12: 0x20707e in std.start.callMainWithArgs (test) return @call(.{ .modifier = .always_inline }, callMain, .{}); ^ /home/andy/Downloads/zig/lib/std/start.zig:409:17: 0x206116 in std.start.posixCallMainAndExit (test) std.os.exit(@call(.{ .modifier = .always_inline }, callMainWithArgs, .{ argc, argv, envp })); ^ /home/andy/Downloads/zig/lib/std/start.zig:322:5: 0x205f22 in std.start._start (test) @call(.{ .modifier = .never_inline }, posixCallMainAndExit, .{}); ^ (process terminated by signal)
At compile-time:
comptime { const optional_number: ?i32 = null; const number = optional_number.?; _ = number; }
$ zig test test.zig ./docgen_tmp/test.zig:3:35: error: unable to unwrap null const number = optional_number.?; ^
At runtime:
const std = @import("std"); pub fn main() void { var optional_number: ?i32 = null; var number = optional_number.?; std.debug.print("value: {}\n", .{number}); }
$ zig build-exe test.zig $ ./test thread 798262 panic: attempt to use null value /home/andy/Downloads/zig/docgen_tmp/test.zig:5:33: 0x22cf0c in main (test) var number = optional_number.?; ^ /home/andy/Downloads/zig/lib/std/start.zig:543:22: 0x225c7c in std.start.callMain (test) root.main(); ^ /home/andy/Downloads/zig/lib/std/start.zig:495:12: 0x20707e in std.start.callMainWithArgs (test) return @call(.{ .modifier = .always_inline }, callMain, .{}); ^ /home/andy/Downloads/zig/lib/std/start.zig:409:17: 0x206116 in std.start.posixCallMainAndExit (test) std.os.exit(@call(.{ .modifier = .always_inline }, callMainWithArgs, .{ argc, argv, envp })); ^ /home/andy/Downloads/zig/lib/std/start.zig:322:5: 0x205f22 in std.start._start (test) @call(.{ .modifier = .never_inline }, posixCallMainAndExit, .{}); ^ (process terminated by signal)
One way to avoid this crash is to test for null instead of assuming non-null, with the if
expression:
const print = @import("std").debug.print; pub fn main() void { const optional_number: ?i32 = null; if (optional_number) |number| { print("got number: {}\n", .{number}); } else { print("it's null\n", .{}); } }
$ zig build-exe test.zig $ ./test it's null
See also:
At compile-time:
comptime { const number = getNumberOrFail() catch unreachable; _ = number; } fn getNumberOrFail() !i32 { return error.UnableToReturnNumber; }
$ zig test test.zig ./docgen_tmp/test.zig:2:38: error: caught unexpected error 'UnableToReturnNumber' const number = getNumberOrFail() catch unreachable; ^
At runtime:
const std = @import("std"); pub fn main() void { const number = getNumberOrFail() catch unreachable; std.debug.print("value: {}\n", .{number}); } fn getNumberOrFail() !i32 { return error.UnableToReturnNumber; }
$ zig build-exe test.zig $ ./test thread 798359 panic: attempt to unwrap error: UnableToReturnNumber /home/andy/Downloads/zig/docgen_tmp/test.zig:9:5: 0x234644 in getNumberOrFail (test) return error.UnableToReturnNumber; ^ ???:?:?: 0x20ce72 in ??? (???) /home/andy/Downloads/zig/docgen_tmp/test.zig:4:38: 0x22cf6b in main (test) const number = getNumberOrFail() catch unreachable; ^ /home/andy/Downloads/zig/lib/std/start.zig:543:22: 0x225c9c in std.start.callMain (test) root.main(); ^ /home/andy/Downloads/zig/lib/std/start.zig:495:12: 0x20709e in std.start.callMainWithArgs (test) return @call(.{ .modifier = .always_inline }, callMain, .{}); ^ /home/andy/Downloads/zig/lib/std/start.zig:409:17: 0x206136 in std.start.posixCallMainAndExit (test) std.os.exit(@call(.{ .modifier = .always_inline }, callMainWithArgs, .{ argc, argv, envp })); ^ /home/andy/Downloads/zig/lib/std/start.zig:322:5: 0x205f42 in std.start._start (test) @call(.{ .modifier = .never_inline }, posixCallMainAndExit, .{}); ^ (process terminated by signal)
One way to avoid this crash is to test for an error instead of assuming a successful result, with the if
expression:
const print = @import("std").debug.print; pub fn main() void { const result = getNumberOrFail(); if (result) |number| { print("got number: {}\n", .{number}); } else |err| { print("got error: {s}\n", .{@errorName(err)}); } } fn getNumberOrFail() !i32 { return error.UnableToReturnNumber; }
$ zig build-exe test.zig $ ./test got error: UnableToReturnNumber
See also:
At compile-time:
comptime { const err = error.AnError; const number = @errorToInt(err) + 10; const invalid_err = @intToError(number); _ = invalid_err; }
$ zig test test.zig ./docgen_tmp/test.zig:4:25: error: integer value 11 represents no error const invalid_err = @intToError(number); ^
At runtime:
const std = @import("std"); pub fn main() void { var err = error.AnError; var number = @errorToInt(err) + 500; var invalid_err = @intToError(number); std.debug.print("value: {}\n", .{invalid_err}); }
$ zig build-exe test.zig $ ./test thread 798455 panic: invalid error code /home/andy/Downloads/zig/docgen_tmp/test.zig:6:23: 0x22cf93 in main (test) var invalid_err = @intToError(number); ^ /home/andy/Downloads/zig/lib/std/start.zig:543:22: 0x225ccc in std.start.callMain (test) root.main(); ^ /home/andy/Downloads/zig/lib/std/start.zig:495:12: 0x2070ce in std.start.callMainWithArgs (test) return @call(.{ .modifier = .always_inline }, callMain, .{}); ^ /home/andy/Downloads/zig/lib/std/start.zig:409:17: 0x206166 in std.start.posixCallMainAndExit (test) std.os.exit(@call(.{ .modifier = .always_inline }, callMainWithArgs, .{ argc, argv, envp })); ^ /home/andy/Downloads/zig/lib/std/start.zig:322:5: 0x205f72 in std.start._start (test) @call(.{ .modifier = .never_inline }, posixCallMainAndExit, .{}); ^ (process terminated by signal)
At compile-time:
const Foo = enum { a, b, c, }; comptime { const a: u2 = 3; const b = @intToEnum(Foo, a); _ = b; }
$ zig test test.zig ./docgen_tmp/test.zig:8:15: error: enum 'Foo' has no tag matching integer value 3 const b = @intToEnum(Foo, a); ^ ./docgen_tmp/test.zig:1:13: note: 'Foo' declared here const Foo = enum { ^
At runtime:
const std = @import("std"); const Foo = enum { a, b, c, }; pub fn main() void { var a: u2 = 3; var b = @intToEnum(Foo, a); std.debug.print("value: {s}\n", .{@tagName(b)}); }
$ zig build-exe test.zig $ ./test thread 798517 panic: invalid enum value /home/andy/Downloads/zig/docgen_tmp/test.zig:11:13: 0x22cf89 in main (test) var b = @intToEnum(Foo, a); ^ /home/andy/Downloads/zig/lib/std/start.zig:543:22: 0x225cec in std.start.callMain (test) root.main(); ^ /home/andy/Downloads/zig/lib/std/start.zig:495:12: 0x2070ee in std.start.callMainWithArgs (test) return @call(.{ .modifier = .always_inline }, callMain, .{}); ^ /home/andy/Downloads/zig/lib/std/start.zig:409:17: 0x206186 in std.start.posixCallMainAndExit (test) std.os.exit(@call(.{ .modifier = .always_inline }, callMainWithArgs, .{ argc, argv, envp })); ^ /home/andy/Downloads/zig/lib/std/start.zig:322:5: 0x205f92 in std.start._start (test) @call(.{ .modifier = .never_inline }, posixCallMainAndExit, .{}); ^ (process terminated by signal)
At compile-time:
const Set1 = error{ A, B, }; const Set2 = error{ A, C, }; comptime { _ = @errSetCast(Set2, Set1.B); }
$ zig test test.zig ./docgen_tmp/test.zig:10:9: error: error.B not a member of error set 'Set2' _ = @errSetCast(Set2, Set1.B); ^
At runtime:
const std = @import("std"); const Set1 = error{ A, B, }; const Set2 = error{ A, C, }; pub fn main() void { foo(Set1.B); } fn foo(set1: Set1) void { const x = @errSetCast(Set2, set1); std.debug.print("value: {}\n", .{x}); }
$ zig build-exe test.zig $ ./test thread 798577 panic: invalid error code /home/andy/Downloads/zig/docgen_tmp/test.zig:15:15: 0x234636 in foo (test) const x = @errSetCast(Set2, set1); ^ /home/andy/Downloads/zig/docgen_tmp/test.zig:12:8: 0x22cf5d in main (test) foo(Set1.B); ^ /home/andy/Downloads/zig/lib/std/start.zig:543:22: 0x225cec in std.start.callMain (test) root.main(); ^ /home/andy/Downloads/zig/lib/std/start.zig:495:12: 0x2070ee in std.start.callMainWithArgs (test) return @call(.{ .modifier = .always_inline }, callMain, .{}); ^ /home/andy/Downloads/zig/lib/std/start.zig:409:17: 0x206186 in std.start.posixCallMainAndExit (test) std.os.exit(@call(.{ .modifier = .always_inline }, callMainWithArgs, .{ argc, argv, envp })); ^ /home/andy/Downloads/zig/lib/std/start.zig:322:5: 0x205f92 in std.start._start (test) @call(.{ .modifier = .never_inline }, posixCallMainAndExit, .{}); ^ (process terminated by signal)
At compile-time:
comptime { const ptr = @intToPtr(*align(1) i32, 0x1); const aligned = @alignCast(4, ptr); _ = aligned; }
$ zig test test.zig ./docgen_tmp/test.zig:3:35: error: pointer address 0x1 is not aligned to 4 bytes const aligned = @alignCast(4, ptr); ^ ./docgen_tmp/test.zig:3:21: note: referenced here const aligned = @alignCast(4, ptr); ^
At runtime:
const mem = @import("std").mem; pub fn main() !void { var array align(4) = [_]u32{ 0x11111111, 0x11111111 }; const bytes = mem.sliceAsBytes(array[0..]); if (foo(bytes) != 0x11111111) return error.Wrong; } fn foo(bytes: []u8) u32 { const slice4 = bytes[1..5]; const int_slice = mem.bytesAsSlice(u32, @alignCast(4, slice4)); return int_slice[0]; }
$ zig build-exe test.zig $ ./test thread 798638 panic: incorrect alignment /home/andy/Downloads/zig/docgen_tmp/test.zig:9:59: 0x2348ac in foo (test) const int_slice = mem.bytesAsSlice(u32, @alignCast(4, slice4)); ^ /home/andy/Downloads/zig/docgen_tmp/test.zig:5:12: 0x22d0c5 in main (test) if (foo(bytes) != 0x11111111) return error.Wrong; ^ /home/andy/Downloads/zig/lib/std/start.zig:553:37: 0x225cfa in std.start.callMain (test) const result = root.main() catch |err| { ^ /home/andy/Downloads/zig/lib/std/start.zig:495:12: 0x2070ce in std.start.callMainWithArgs (test) return @call(.{ .modifier = .always_inline }, callMain, .{}); ^ /home/andy/Downloads/zig/lib/std/start.zig:409:17: 0x206166 in std.start.posixCallMainAndExit (test) std.os.exit(@call(.{ .modifier = .always_inline }, callMainWithArgs, .{ argc, argv, envp })); ^ /home/andy/Downloads/zig/lib/std/start.zig:322:5: 0x205f72 in std.start._start (test) @call(.{ .modifier = .never_inline }, posixCallMainAndExit, .{}); ^ (process terminated by signal)
At compile-time:
comptime { var f = Foo{ .int = 42 }; f.float = 12.34; } const Foo = union { float: f32, int: u32, };
$ zig test test.zig ./docgen_tmp/test.zig:3:6: error: accessing union field 'float' while field 'int' is set f.float = 12.34; ^
At runtime:
const std = @import("std"); const Foo = union { float: f32, int: u32, }; pub fn main() void { var f = Foo{ .int = 42 }; bar(&f); } fn bar(f: *Foo) void { f.float = 12.34; std.debug.print("value: {}\n", .{f.float}); }
$ zig build-exe test.zig $ ./test thread 798698 panic: access of inactive union field /home/andy/Downloads/zig/docgen_tmp/test.zig:14:6: 0x241eea in bar (test) f.float = 12.34; ^ /home/andy/Downloads/zig/docgen_tmp/test.zig:10:8: 0x23a80c in main (test) bar(&f); ^ /home/andy/Downloads/zig/lib/std/start.zig:543:22: 0x23358c in std.start.callMain (test) root.main(); ^ /home/andy/Downloads/zig/lib/std/start.zig:495:12: 0x21498e in std.start.callMainWithArgs (test) return @call(.{ .modifier = .always_inline }, callMain, .{}); ^ /home/andy/Downloads/zig/lib/std/start.zig:409:17: 0x213a26 in std.start.posixCallMainAndExit (test) std.os.exit(@call(.{ .modifier = .always_inline }, callMainWithArgs, .{ argc, argv, envp })); ^ /home/andy/Downloads/zig/lib/std/start.zig:322:5: 0x213832 in std.start._start (test) @call(.{ .modifier = .never_inline }, posixCallMainAndExit, .{}); ^ (process terminated by signal)
This safety is not available for extern
or packed
unions.
To change the active field of a union, assign the entire union, like this:
const std = @import("std"); const Foo = union { float: f32, int: u32, }; pub fn main() void { var f = Foo{ .int = 42 }; bar(&f); } fn bar(f: *Foo) void { f.* = Foo{ .float = 12.34 }; std.debug.print("value: {}\n", .{f.float}); }
$ zig build-exe test.zig $ ./test value: 1.23400001e+01
To change the active field of a union when a meaningful value for the field is not known, use undefined, like this:
const std = @import("std"); const Foo = union { float: f32, int: u32, }; pub fn main() void { var f = Foo{ .int = 42 }; f = Foo{ .float = undefined }; bar(&f); std.debug.print("value: {}\n", .{f.float}); } fn bar(f: *Foo) void { f.float = 12.34; }
$ zig build-exe test.zig $ ./test value: 1.23400001e+01
See also:
TODO
This happens when casting a pointer with the address 0 to a pointer which may not have the address 0. For example, C Pointers, Optional Pointers, and allowzero pointers allow address zero, but normal Pointers do not.
At compile-time:
comptime { const opt_ptr: ?*i32 = null; const ptr = @ptrCast(*i32, opt_ptr); _ = ptr; }
$ zig test test.zig ./docgen_tmp/test.zig:3:17: error: null pointer casted to type '*i32' const ptr = @ptrCast(*i32, opt_ptr); ^
At runtime:
pub fn main() void { var opt_ptr: ?*i32 = null; var ptr = @ptrCast(*i32, opt_ptr); _ = ptr; }
$ zig build-exe test.zig $ ./test thread 798830 panic: cast causes pointer to be null /home/andy/Downloads/zig/docgen_tmp/test.zig:3:15: 0x22ce50 in main (test) var ptr = @ptrCast(*i32, opt_ptr); ^ /home/andy/Downloads/zig/lib/std/start.zig:543:22: 0x225bbc in std.start.callMain (test) root.main(); ^ /home/andy/Downloads/zig/lib/std/start.zig:495:12: 0x206fbe in std.start.callMainWithArgs (test) return @call(.{ .modifier = .always_inline }, callMain, .{}); ^ /home/andy/Downloads/zig/lib/std/start.zig:409:17: 0x206056 in std.start.posixCallMainAndExit (test) std.os.exit(@call(.{ .modifier = .always_inline }, callMainWithArgs, .{ argc, argv, envp })); ^ /home/andy/Downloads/zig/lib/std/start.zig:322:5: 0x205e62 in std.start._start (test) @call(.{ .modifier = .never_inline }, posixCallMainAndExit, .{}); ^ (process terminated by signal)
The Zig language performs no memory management on behalf of the programmer. This is why Zig has no runtime, and why Zig code works seamlessly in so many environments, including real-time software, operating system kernels, embedded devices, and low latency servers. As a consequence, Zig programmers must always be able to answer the question:
Like Zig, the C programming language has manual memory management. However, unlike Zig, C has a default allocator - malloc
, realloc
, and free
. When linking against libc, Zig exposes this allocator with std.heap.c_allocator
. However, by convention, there is no default allocator in Zig. Instead, functions which need to allocate accept an Allocator
parameter. Likewise, data structures such as std.ArrayList
accept an Allocator
parameter in their initialization functions:
const std = @import("std"); const Allocator = std.mem.Allocator; const expect = std.testing.expect; test "using an allocator" { var buffer: [100]u8 = undefined; const allocator = std.heap.FixedBufferAllocator.init(&buffer).allocator(); const result = try concat(allocator, "foo", "bar"); try expect(std.mem.eql(u8, "foobar", result)); } fn concat(allocator: Allocator, a: []const u8, b: []const u8) ![]u8 { const result = try allocator.alloc(u8, a.len + b.len); std.mem.copy(u8, result, a); std.mem.copy(u8, result[a.len..], b); return result; }
$ zig test allocator.zig 1/1 test "using an allocator"... OK All 1 tests passed.
In the above example, 100 bytes of stack memory are used to initialize a FixedBufferAllocator
, which is then passed to a function. As a convenience there is a global FixedBufferAllocator
available for quick tests at std.testing.allocator
, which will also do perform basic leak detection.
Zig has a general purpose allocator available to be imported with std.heap.GeneralPurposeAllocator
. However, it is still recommended to follow the Choosing an Allocator guide.
What allocator to use depends on a number of factors. Here is a flow chart to help you decide:
Allocator
as a parameter and allow your library's users to decide what allocator to use. std.heap.c_allocator
is likely the right choice, at least for your main allocator.std.heap.FixedBufferAllocator
or std.heap.ThreadSafeFixedBufferAllocator
depending on whether you need thread-safety or not. const std = @import("std"); pub fn main() !void { var arena = std.heap.ArenaAllocator.init(std.heap.page_allocator); defer arena.deinit(); const allocator = arena.allocator(); const ptr = try allocator.create(i32); std.debug.print("ptr={*}\n", .{ptr}); }
$ zig build-exe cli_allocation.zig $ ./cli_allocation ptr=i32@7fc75df6e018
arena.deinit()
. std.heap.ArenaAllocator
is a great candidate. As demonstrated in the previous bullet point, this allows you to free entire arenas at once. Note also that if an upper bound of memory can be established, then std.heap.FixedBufferAllocator
can be used as a further optimization. error.OutOfMemory
is handled correctly? In this case, use std.testing.FailingAllocator
. std.testing.allocator
. std.heap.GeneralPurposeAllocator
in your main function, and then pass it or sub-allocators around to various parts of your application. String literals such as "foo"
are in the global constant data section. This is why it is an error to pass a string literal to a mutable slice, like this:
fn foo(s: []u8) void { _ = s; } test "string literal to mutable slice" { foo("hello"); }
$ zig test test.zig ./docgen_tmp/test.zig:6:9: error: expected type '[]u8', found '*const [5:0]u8' foo("hello"); ^
However if you make the slice constant, then it works:
fn foo(s: []const u8) void { _ = s; } test "string literal to constant slice" { foo("hello"); }
$ zig test strlit.zig 1/1 test "string literal to constant slice"... OK All 1 tests passed.
Just like string literals, const
declarations, when the value is known at comptime, are stored in the global constant data section. Also Compile Time Variables are stored in the global constant data section.
var
declarations inside functions are stored in the function's stack frame. Once a function returns, any Pointers to variables in the function's stack frame become invalid references, and dereferencing them becomes unchecked Undefined Behavior.
var
declarations at the top level or in struct declarations are stored in the global data section.
The location of memory allocated with allocator.alloc
or allocator.create
is determined by the allocator's implementation.
TODO: thread local variables
Zig programmers can implement their own allocators by fulfilling the Allocator interface. In order to do this one must read carefully the documentation comments in std/mem.zig and then supply a allocFn
and a resizeFn
.
There are many example allocators to look at for inspiration. Look at std/heap.zig and std.heap.GeneralPurposeAllocator
.
Many programming languages choose to handle the possibility of heap allocation failure by unconditionally crashing. By convention, Zig programmers do not consider this to be a satisfactory solution. Instead, error.OutOfMemory
represents heap allocation failure, and Zig libraries return this error code whenever heap allocation failure prevented an operation from completing successfully.
Some have argued that because some operating systems such as Linux have memory overcommit enabled by default, it is pointless to handle heap allocation failure. There are many problems with this reasoning:
Recursion is a fundamental tool in modeling software. However it has an often-overlooked problem: unbounded memory allocation.
Recursion is an area of active experimentation in Zig and so the documentation here is not final. You can read a summary of recursion status in the 0.3.0 release notes.
The short summary is that currently recursion works normally as you would expect. Although Zig code is not yet protected from stack overflow, it is planned that a future version of Zig will provide such protection, with some degree of cooperation from Zig code required.
It is the Zig programmer's responsibility to ensure that a pointer is not accessed when the memory pointed to is no longer available. Note that a slice is a form of pointer, in that it references other memory.
In order to prevent bugs, there are some helpful conventions to follow when dealing with pointers. In general, when a function returns a pointer, the documentation for the function should explain who "owns" the pointer. This concept helps the programmer decide when it is appropriate, if ever, to free the pointer.
For example, the function's documentation may say "caller owns the returned memory", in which case the code that calls the function must have a plan for when to free that memory. Probably in this situation, the function will accept an Allocator
parameter.
Sometimes the lifetime of a pointer may be more complicated. For example, the std.ArrayList(T).items
slice has a lifetime that remains valid until the next time the list is resized, such as by appending new elements.
The API documentation for functions and data structures should take great care to explain the ownership and lifetime semantics of pointers. Ownership determines whose responsibility it is to free the memory referenced by the pointer, and lifetime determines the point at which the memory becomes inaccessible (lest Undefined Behavior occur).
Compile variables are accessible by importing the "builtin"
package, which the compiler makes available to every Zig source file. It contains compile-time constants such as the current target, endianness, and release mode.
const builtin = @import("builtin"); const separator = if (builtin.os.tag == builtin.Os.windows) '\\' else '/';
Example of what is imported with @import("builtin")
:
const std = @import("std"); /// Zig version. When writing code that supports multiple versions of Zig, prefer /// feature detection (i.e. with `@hasDecl` or `@hasField`) over version checks. pub const zig_version = std.SemanticVersion.parse("0.9.0-dev.1966+20328e976") catch unreachable; /// Temporary until self-hosted is feature complete. pub const zig_is_stage2 = false; /// Temporary until self-hosted supports the `cpu.arch` value. pub const stage2_arch: std.Target.Cpu.Arch = .x86_64; /// Temporary until self-hosted can call `std.Target.x86.featureSetHas` at comptime. pub const stage2_x86_cx16 = true; pub const output_mode = std.builtin.OutputMode.Obj; pub const link_mode = std.builtin.LinkMode.Static; pub const is_test = false; pub const single_threaded = false; pub const abi = std.Target.Abi.gnu; pub const cpu: std.Target.Cpu = .{ .arch = .x86_64, .model = &std.Target.x86.cpu.skylake, .features = std.Target.x86.featureSet(&[_]std.Target.x86.Feature{ .@"64bit", .adx, .aes, .avx, .avx2, .bmi, .bmi2, .clflushopt, .cmov, .cx16, .cx8, .ermsb, .f16c, .false_deps_popcnt, .fast_15bytenop, .fast_gather, .fast_scalar_fsqrt, .fast_shld_rotate, .fast_variable_crosslane_shuffle, .fast_variable_perlane_shuffle, .fast_vector_fsqrt, .fma, .fsgsbase, .fxsr, .idivq_to_divl, .invpcid, .lzcnt, .macrofusion, .mmx, .movbe, .nopl, .pclmul, .popcnt, .prfchw, .rdrnd, .rdseed, .sahf, .sgx, .slow_3ops_lea, .sse, .sse2, .sse3, .sse4_1, .sse4_2, .ssse3, .vzeroupper, .x87, .xsave, .xsavec, .xsaveopt, .xsaves, }), }; pub const os = std.Target.Os{ .tag = .linux, .version_range = .{ .linux = .{ .range = .{ .min = .{ .major = 5, .minor = 10, .patch = 81, }, .max = .{ .major = 5, .minor = 10, .patch = 81, }, }, .glibc = .{ .major = 2, .minor = 33, .patch = 0, }, }}, }; pub const target = std.Target{ .cpu = cpu, .os = os, .abi = abi, }; pub const object_format = std.Target.ObjectFormat.elf; pub const mode = std.builtin.Mode.Debug; pub const link_libc = false; pub const link_libcpp = false; pub const have_error_return_tracing = true; pub const valgrind_support = true; pub const position_independent_code = false; pub const position_independent_executable = false; pub const strip_debug_info = false; pub const code_model = std.builtin.CodeModel.default;
See also:
TODO: explain how root source file finds other files
TODO: pub fn main
TODO: pub fn panic
TODO: if linking with libc you can use export fn main
TODO: order independent top level declarations
TODO: lazy analysis
TODO: using comptime { _ = @import() }
The Zig Build System provides a cross-platform, dependency-free way to declare the logic required to build a project. With this system, the logic to build a project is written in a build.zig file, using the Zig Build System API to declare and configure build artifacts and other tasks.
Some examples of tasks the build system can help with:
zig fmt
on a codebase or a subset of it.To use the build system, run zig build --help to see a command-line usage help menu. This will include project-specific options that were declared in the build.zig script.
This build.zig
file is automatically generated by zig init-exe.
const Builder = @import("std").build.Builder; pub fn build(b: *Builder) void { // Standard target options allows the person running `zig build` to choose // what target to build for. Here we do not override the defaults, which // means any target is allowed, and the default is native. Other options // for restricting supported target set are available. const target = b.standardTargetOptions(.{}); // Standard release options allow the person running `zig build` to select // between Debug, ReleaseSafe, ReleaseFast, and ReleaseSmall. const mode = b.standardReleaseOptions(); const exe = b.addExecutable("example", "src/main.zig"); exe.setTarget(target); exe.setBuildMode(mode); exe.install(); const run_cmd = exe.run(); run_cmd.step.dependOn(b.getInstallStep()); if (b.args) |args| { run_cmd.addArgs(args); } const run_step = b.step("run", "Run the app"); run_step.dependOn(&run_cmd.step); }
This build.zig
file is automatically generated by zig init-lib.
const Builder = @import("std").build.Builder; pub fn build(b: *Builder) void { const mode = b.standardReleaseOptions(); const lib = b.addStaticLibrary("example", "src/main.zig"); lib.setBuildMode(mode); lib.install(); var main_tests = b.addTest("src/main.zig"); main_tests.setBuildMode(mode); const test_step = b.step("test", "Run library tests"); test_step.dependOn(&main_tests.step); }
lib.addCSourceFile("src/lib.c", &[_][]const u8{ "-Wall", "-Wextra", "-Werror", });
Although Zig is independent of C, and, unlike most other languages, does not depend on libc, Zig acknowledges the importance of interacting with existing C code.
There are a few ways that Zig facilitates C interop.
These have guaranteed C ABI compatibility and can be used like any other type.
c_short
c_ushort
c_int
c_uint
c_long
c_ulong
c_longlong
c_ulonglong
c_longdouble
c_void
See also:
The @cImport
builtin function can be used to directly import symbols from .h
files:
const c = @cImport({ // See https://github.com/ziglang/zig/issues/515 @cDefine("_NO_CRT_STDIO_INLINE", "1"); @cInclude("stdio.h"); }); pub fn main() void { _ = c.printf("hello\n"); }
$ zig build-exe test.zig -lc $ ./test hello
The @cImport
function takes an expression as a parameter. This expression is evaluated at compile-time and is used to control preprocessor directives and include multiple .h
files:
const builtin = @import("builtin"); const c = @cImport({ @cDefine("NDEBUG", builtin.mode == .ReleaseFast); if (something) { @cDefine("_GNU_SOURCE", {}); } @cInclude("stdlib.h"); if (something) { @cUndef("_GNU_SOURCE"); } @cInclude("soundio.h"); });
See also:
Important! When translating C code with zig translate-c, you must use the same -target triple that you will use when compiling the translated code. In addition, you must ensure that the -cflags used, if any, match the cflags used by code on the target system. Using the incorrect -target or -cflags could result in clang or Zig parse failures, or subtle ABI incompatibilities when linking with C code.
long FOO = __LONG_MAX__;
$ zig translate-c -target thumb-freestanding-gnueabihf varytarget.h|grep FOO pub export var FOO: c_long = 2147483647; $ zig translate-c -target x86_64-macos-gnu varytarget.h|grep FOO pub export var FOO: c_long = 9223372036854775807;
enum FOO { BAR }; int do_something(enum FOO foo);
$ zig translate-c varycflags.h|grep -B1 do_something pub const enum_FOO = c_uint; pub extern fn do_something(foo: enum_FOO) c_int; $ zig translate-c -cflags -fshort-enums -- varycflags.h|grep -B1 do_something pub const enum_FOO = u8; pub extern fn do_something(foo: enum_FOO) c_int;
@cImport
and zig translate-c use the same underlying C translation functionality, so on a technical level they are equivalent. In practice, @cImport
is useful as a way to quickly and easily access numeric constants, typedefs, and record types without needing any extra setup. If you need to pass cflags to clang, or if you would like to edit the translated code, it is recommended to use zig translate-c and save the results to a file. Common reasons for editing the generated code include: changing anytype
parameters in function-like macros to more specific types; changing [*c]T
pointers to [*]T
or *T
pointers for improved type safety; and enabling or disabling runtime safety within specific functions.
See also:
The C translation feature (whether used via zig translate-c or @cImport
) integrates with the Zig caching system. Subsequent runs with the same source file, target, and cflags will use the cache instead of repeatedly translating the same code.
To see where the cached files are stored when compiling code that uses @cImport
, use the --verbose-cimport flag:
const c = @cImport({ @cDefine("_NO_CRT_STDIO_INLINE", "1"); @cInclude("stdio.h"); }); pub fn main() void { _ = c; }
$ zig build-exe verbose.zig -lc --verbose-cimport info(compilation): C import source: docgen_tmp/zig-cache/o/086ec5181a4d9a8461213ac56b50f503/cimport.h info(compilation): C import .d file: docgen_tmp/zig-cache/o/086ec5181a4d9a8461213ac56b50f503/cimport.h.d info(compilation): C import output: docgen_tmp/zig-cache/o/102137712066d77608ec368092fa98d6/cimport.zig $ ./verbose
cimport.h
contains the file to translate (constructed from calls to @cInclude
, @cDefine
, and @cUndef
), cimport.h.d
is the list of file dependencies, and cimport.zig
contains the translated output.
See also:
Some C constructs cannot be translated to Zig - for example, goto, structs with bitfields, and token-pasting macros. Zig employs demotion to allow translation to continue in the face of non-translatable entities.
Demotion comes in three varieties - opaque, extern, and @compileError
. C structs and unions that cannot be translated correctly will be translated as opaque{}
. Functions that contain opaque types or code constructs that cannot be translated will be demoted to extern
declarations. Thus, non-translatable types can still be used as pointers, and non-translatable functions can be called so long as the linker is aware of the compiled function.
@compileError
is used when top-level definitions (global variables, function prototypes, macros) cannot be translated or demoted. Since Zig uses lazy analysis for top-level declarations, untranslatable entities will not cause a compile error in your code unless you actually use them.
See also:
C Translation makes a best-effort attempt to translate function-like macros into equivalent Zig functions. Since C macros operate at the level of lexical tokens, not all C macros can be translated to Zig. Macros that cannot be translated will be be demoted to @compileError
. Note that C code which uses macros will be translated without any additional issues (since Zig operates on the pre-processed source with macros expanded). It is merely the macros themselves which may not be translatable to Zig.
Consider the following example:
#define MAKELOCAL(NAME, INIT) int NAME = INIT int foo(void) { MAKELOCAL(a, 1); MAKELOCAL(b, 2); return a + b; }
$ zig translate-c macro.c > macro.zig
pub export fn foo() c_int { var a: c_int = 1; var b: c_int = 2; return a + b; } pub const MAKELOCAL = @compileError("unable to translate C expr: unexpected token .Equal"); // macro.c:1:9
Note that foo
was translated correctly despite using a non-translatable macro. MAKELOCAL
was demoted to @compileError
since it cannot be expressed as a Zig function; this simply means that you cannot directly use MAKELOCAL
from Zig.
See also:
This type is to be avoided whenever possible. The only valid reason for using a C pointer is in auto-generated code from translating C code.
When importing C header files, it is ambiguous whether pointers should be translated as single-item pointers (*T
) or many-item pointers ([*]T
). C pointers are a compromise so that Zig code can utilize translated header files directly.
[*c]T
- C pointer.
?usize
. Note that creating an optional C pointer is unnecessary as one can use normal Optional Pointers. When a C pointer is pointing to a single struct (not an array), dereference the C pointer to access to the struct's fields or member data. That syntax looks like this:
ptr_to_struct.*.struct_member
This is comparable to doing ->
in C.
When a C pointer is pointing to an array of structs, the syntax reverts to this:
ptr_to_struct_array[index].struct_member
One of the primary use cases for Zig is exporting a library with the C ABI for other programming languages to call into. The export
keyword in front of functions, variables, and types causes them to be part of the library API:
export fn add(a: i32, b: i32) i32 { return a + b; }
To make a static library:
$ zig build-lib mathtest.zig
To make a shared library:
$ zig build-lib mathtest.zig -dynamic
Here is an example with the Zig Build System:
// This header is generated by zig from mathtest.zig #include "mathtest.h" #include <stdio.h> int main(int argc, char **argv) { int32_t result = add(42, 1337); printf("%d\n", result); return 0; }
const Builder = @import("std").build.Builder; pub fn build(b: *Builder) void { const lib = b.addSharedLibrary("mathtest", "mathtest.zig", b.version(1, 0, 0)); const exe = b.addExecutable("test", null); exe.addCSourceFile("test.c", &[_][]const u8{"-std=c99"}); exe.linkLibrary(lib); exe.linkSystemLibrary("c"); b.default_step.dependOn(&exe.step); const run_cmd = exe.run(); const test_step = b.step("test", "Test the program"); test_step.dependOn(&run_cmd.step); }
$ zig build test 1379
See also:
You can mix Zig object files with any other object files that respect the C ABI. Example:
const base64 = @import("std").base64; export fn decode_base_64( dest_ptr: [*]u8, dest_len: usize, source_ptr: [*]const u8, source_len: usize, ) usize { const src = source_ptr[0..source_len]; const dest = dest_ptr[0..dest_len]; const base64_decoder = base64.standard.Decoder; const decoded_size = base64_decoder.calcSizeForSlice(src) catch unreachable; base64_decoder.decode(dest[0..decoded_size], src) catch unreachable; return decoded_size; }
// This header is generated by zig from base64.zig #include "base64.h" #include <string.h> #include <stdio.h> int main(int argc, char **argv) { const char *encoded = "YWxsIHlvdXIgYmFzZSBhcmUgYmVsb25nIHRvIHVz"; char buf[200]; size_t len = decode_base_64(buf, 200, encoded, strlen(encoded)); buf[len] = 0; puts(buf); return 0; }
const Builder = @import("std").build.Builder; pub fn build(b: *Builder) void { const obj = b.addObject("base64", "base64.zig"); const exe = b.addExecutable("test", null); exe.addCSourceFile("test.c", &[_][]const u8{"-std=c99"}); exe.addObject(obj); exe.linkSystemLibrary("c"); exe.install(); }
$ zig build $ ./zig-out/bin/test all your base are belong to us
See also:
Zig supports building for WebAssembly out of the box.
For host environments like the web browser and nodejs, build as a dynamic library using the freestanding OS target. Here's an example of running Zig code compiled to WebAssembly with nodejs.
extern fn print(i32) void; export fn add(a: i32, b: i32) void { print(a + b); }
$ zig build-lib math.zig -target wasm32-freestanding -dynamic
const fs = require('fs'); const source = fs.readFileSync("./math.wasm"); const typedArray = new Uint8Array(source); WebAssembly.instantiate(typedArray, { env: { print: (result) => { console.log(`The result is ${result}`); } }}).then(result => { const add = result.instance.exports.add; add(1, 2); });
$ node test.js The result is 3
Zig's support for WebAssembly System Interface (WASI) is under active development. Example of using the standard library and reading command line arguments:
const std = @import("std"); pub fn main() !void { var general_purpose_allocator = std.heap.GeneralPurposeAllocator(.{}){}; const gpa = general_purpose_allocator.allocator(); const args = try std.process.argsAlloc(gpa); defer std.process.argsFree(gpa, args); for (args) |arg, i| { std.debug.print("{}: {s}\n", .{ i, arg }); } }
$ zig build-exe args.zig -target wasm32-wasi
$ wasmtime args.wasm 123 hello 0: args.wasm 1: 123 2: hello
A more interesting example would be extracting the list of preopens from the runtime. This is now supported in the standard library via std.fs.wasi.PreopenList
:
const std = @import("std"); const PreopenList = std.fs.wasi.PreopenList; pub fn main() !void { var general_purpose_allocator = std.heap.GeneralPurposeAllocator(.{}){}; const gpa = general_purpose_allocator.allocator(); var preopens = PreopenList.init(gpa); defer preopens.deinit(); try preopens.populate(); for (preopens.asSlice()) |preopen, i| { std.debug.print("{}: {}\n", .{ i, preopen }); } }
$ zig build-exe preopens.zig -target wasm32-wasi
$ wasmtime --dir=. preopens.wasm 0: Preopen{ .fd = 3, .type = PreopenType{ .Dir = '.' } }
Zig supports generating code for all targets that LLVM supports. Here is what it looks like to execute zig targets
on a Linux x86_64 computer:
$ zig targets Architectures: arm v8_4a v8_3a v8_2a v8_1a v8 v8r v8m_baseline v8m_mainline v7 v7em v7m v7s v7k v7ve v6 v6m v6k v6t2 v5 v5te v4t armeb v8_4a v8_3a v8_2a v8_1a v8 v8r v8m_baseline v8m_mainline v7 v7em v7m v7s v7k v7ve v6 v6m v6k v6t2 v5 v5te v4t aarch64 v8_4a v8_3a v8_2a v8_1a v8 v8r v8m_baseline v8m_mainline aarch64_be v8_4a v8_3a v8_2a v8_1a v8 v8r v8m_baseline v8m_mainline avr bpfel bpfeb hexagon mips mipsel mips64 mips64el msp430 powerpc powerpc64 powerpc64le r600 amdgcn riscv32 riscv64 sparc sparcv9 sparcel s390x thumb v8_4a v8_3a v8_2a v8_1a v8 v8r v8m_baseline v8m_mainline v7 v7em v7m v7s v7k v7ve v6 v6m v6k v6t2 v5 v5te v4t thumbeb v8_4a v8_3a v8_2a v8_1a v8 v8r v8m_baseline v8m_mainline v7 v7em v7m v7s v7k v7ve v6 v6m v6k v6t2 v5 v5te v4t i386 x86_64 (native) xcore nvptx nvptx64 lanai wasm32 wasm64 Operating Systems: freestanding ananas cloudabi dragonfly freebsd fuchsia ios kfreebsd linux (native) lv2 macos netbsd openbsd solaris windows haiku minix rtems nacl cnk aix cuda nvcl amdhsa ps4 elfiamcu tvos wasi watchos mesa3d contiki amdpal zen uefi C ABIs: none gnu (native) gnuabin32 gnuabi64 gnueabi gnueabihf gnux32 code16 eabi eabihf android musl musleabi musleabihf msvc itanium cygnus coreclr simulator Available libcs: aarch64_be-linux-gnu aarch64_be-linux-musl aarch64-linux-gnu aarch64-linux-musleabi armeb-linux-gnueabi armeb-linux-gnueabihf armeb-linux-musleabi armeb-linux-musleabihf arm-linux-gnueabi arm-linux-gnueabihf arm-linux-musleabi arm-linux-musleabihf i386-linux-gnu i386-linux-musl mips64el-linux-gnuabi64 mips64el-linux-gnuabin32 mips64el-linux-musl mips64-linux-gnuabi64 mips64-linux-gnuabin32 mips64-linux-musl mipsel-linux-gnu mipsel-linux-musl mips-linux-gnu mips-linux-musl nios2-linux-gnu powerpc64le-linux-gnu powerpc64le-linux-musl powerpc64-linux-gnu powerpc64-linux-musl powerpc-linux-gnu powerpc-linux-musl riscv32-linux-musl riscv64-linux-gnu riscv64-linux-musl s390x-linux-gnu s390x-linux-musl sparc-linux-gnu sparcv9-linux-gnu wasm32-freestanding-musl wasm32-wasi-musl x86_64-linux-gnu x86_64-linux-gnux32 x86_64-linux-musl
The Zig Standard Library (@import("std")
) has architecture, environment, and operating system abstractions, and thus takes additional work to support more platforms. Not all standard library code requires operating system abstractions, however, so things such as generic data structures work on all above platforms.
The current list of targets supported by the Zig Standard Library is:
These coding conventions are not enforced by the compiler, but they are shipped in this documentation along with the compiler in order to provide a point of reference, should anyone wish to point to an authority on agreed upon Zig coding style.
Roughly speaking: camelCaseFunctionName
, TitleCaseTypeName
, snake_case_variable_name
. More precisely:
x
is a type
then x
should be TitleCase
, unless it is a struct
with 0 fields and is never meant to be instantiated, in which case it is considered to be a "namespace" and uses snake_case
. x
is callable, and x
's return type is type
, then x
should be TitleCase
. x
is otherwise callable, then x
should be camelCase
. x
should be snake_case
. Acronyms, initialisms, proper nouns, or any other word that has capitalization rules in written English are subject to naming conventions just like any other word. Even acronyms that are only 2 letters long are subject to these conventions.
File names fall into two categories: types and namespaces. If the file (implicitly a struct) has top level fields, it should be named like any other struct with fields using TitleCase
. Otherwise, it should use snake_case
. Directory names should be snake_case
.
These are general rules of thumb; if it makes sense to do something different, do what makes sense. For example, if there is an established convention such as ENOENT
, follow the established convention.
const namespace_name = @import("dir_name/file_name.zig"); const TypeName = @import("dir_name/TypeName.zig"); var global_var: i32 = undefined; const const_name = 42; const primitive_type_alias = f32; const string_alias = []u8; const StructName = struct { field: i32, }; const StructAlias = StructName; fn functionName(param_name: TypeName) void { var functionPointer = functionName; functionPointer(); functionPointer = otherFunction; functionPointer(); } const functionAlias = functionName; fn ListTemplateFunction(comptime ChildType: type, comptime fixed_size: usize) type { return List(ChildType, fixed_size); } fn ShortList(comptime T: type, comptime n: usize) type { return struct { field_name: [n]T, fn methodName() void {} }; } // The word XML loses its casing when used in Zig identifiers. const xml_document = \\<?xml version="1.0" encoding="UTF-8"?> \\<document> \\</document> ; const XmlParser = struct { field: i32, }; // The initials BE (Big Endian) are just another word in Zig identifier names. fn readU32Be() u32 {}
See the Zig Standard Library for more examples.
Zig source code is encoded in UTF-8. An invalid UTF-8 byte sequence results in a compile error.
Throughout all zig source code (including in comments), some code points are never allowed:
LF (byte value 0x0a, code point U+000a, '\n'
) is the line terminator in Zig source code. This byte value terminates every line of zig source code except the last line of the file. It is recommended that non-empty source files end with an empty line, which means the last byte would be 0x0a (LF).
Each LF may be immediately preceded by a single CR (byte value 0x0d, code point U+000d, '\r'
) to form a Windows style line ending, but this is discouraged. A CR in any other context is not allowed.
HT hard tabs (byte value 0x09, code point U+0009, '\t'
) are interchangeable with SP spaces (byte value 0x20, code point U+0020, ' '
) as a token separator, but use of hard tabs is discouraged. See Grammar.
Note that running zig fmt on a source file will implement all recommendations mentioned here. Note also that the stage1 compiler does not yet support CR or HT control characters.
Note that a tool reading Zig source code can make assumptions if the source code is assumed to be correct Zig code. For example, when identifying the ends of lines, a tool can use a naive search such as /\n/
, or an advanced search such as /\r\n?|[\n\u0085\u2028\u2029]/
, and in either case line endings will be correctly identified. For another example, when identifying the whitespace before the first token on a line, a tool can either use a naive search such as /[ \t]/
, or an advanced search such as /\s/
, and in either case whitespace will be correctly identified.
Keyword | Description |
---|---|
align | align can be used to specify the alignment of a pointer. It can also be used after a variable or function declaration to specify the alignment of pointers to that variable or function.
|
allowzero | The pointer attribute allowzero allows a pointer to have address zero.
|
and | The boolean operator and .
|
anyframe | anyframe can be used as a type for variables which hold pointers to function frames.
|
anytype | Function parameters and struct fields can be declared with anytype in place of the type. The type will be inferred where the function is called or the struct is instantiated.
|
asm | asm begins an inline assembly expression. This allows for directly controlling the machine code generated on compilation.
|
async | async can be used before a function call to get a pointer to the function's frame when it suspends.
|
await | await can be used to suspend the current function until the frame provided after the await completes. await copies the value returned from the target function's frame to the caller.
|
break | break can be used with a block label to return a value from the block. It can also be used to exit a loop before iteration completes naturally. |
catch | catch can be used to evaluate an expression if the expression before it evaluates to an error. The expression after the catch can optionally capture the error value. |
comptime | comptime before a declaration can be used to label variables or function parameters as known at compile time. It can also be used to guarantee an expression is run at compile time.
|
const | const declares a variable that can not be modified. Used as a pointer attribute, it denotes the value referenced by the pointer cannot be modified.
|
continue | continue can be used in a loop to jump back to the beginning of the loop. |
defer | defer will execute an expression when control flow leaves the current block.
|
else | else can be used to provide an alternate branch for if , switch , while , and for expressions.
|
enum | enum defines an enum type.
|
errdefer | errdefer will execute an expression when control flow leaves the current block if the function returns an error.
|
error | error defines an error type.
|
export | export makes a function or variable externally visible in the generated object file. Exported functions default to the C calling convention.
|
extern | extern can be used to declare a function or variable that will be resolved at link time, when linking statically or at runtime, when linking dynamically.
|
false | The boolean value false .
|
fn | fn declares a function.
|
for | A for expression can be used to iterate over the elements of a slice, array, or tuple.
|
if | An if expression can test boolean expressions, optional values, or error unions. For optional values or error unions, the if expression can capture the unwrapped value.
|
inline | inline can be used to label a loop expression such that it will be unrolled at compile time. It can also be used to force a function to be inlined at all call sites.
|
noalias | The noalias keyword.
|
nosuspend | The nosuspend keyword can be used in front of a block, statement or expression, to mark a scope where no suspension points are reached. In particular, inside a nosuspend scope:
nosuspend scope does not cause the enclosing function to become an async function.
|
null | The optional value null .
|
or | The boolean operator or .
|
orelse | orelse can be used to evaluate an expression if the expression before it evaluates to null. |
packed | The packed keyword before a struct definition changes the struct's in-memory layout to the guaranteed packed layout.
|
pub | The pub in front of a top level declaration makes the declaration available to reference from a different file than the one it is declared in.
|
resume | resume will continue execution of a function frame after the point the function was suspended.
|
return | return exits a function with a value.
|
linksection | The linksection keyword.
|
struct | struct defines a struct.
|
suspend | suspend will cause control flow to return to the call site or resumer of the function. suspend can also be used before a block within a function, to allow the function access to its frame before control flow returns to the call site.
|
switch | A switch expression can be used to test values of a common type. switch cases can capture field values of a Tagged union.
|
test | The test keyword can be used to denote a top-level block of code used to make sure behavior meets expectations.
|
threadlocal | threadlocal can be used to specify a variable as thread-local.
|
true | The boolean value true .
|
try | try evaluates an error union expression. If it is an error, it returns from the current function with the same error. Otherwise, the expression results in the unwrapped value.
|
undefined | undefined can be used to leave a value uninitialized.
|
union | union defines a union.
|
unreachable | unreachable can be used to assert that control flow will never happen upon a particular location. Depending on the build mode, unreachable may emit a panic.
|
usingnamespace | usingnamespace is a top-level declaration that imports all the public declarations of the operand, which must be a struct, union, or enum, into the current scope.
|
var | var declares a variable that may be modified.
|
volatile | volatile can be used to denote loads or stores of a pointer have side effects. It can also modify an inline assembly expression to denote it has side effects. |
while | A while expression can be used to repeatedly test a boolean, optional, or error union expression, and cease looping when that expression evaluates to false, null, or an error, respectively.
|
Root <- skip container_doc_comment? ContainerMembers eof # *** Top level *** ContainerMembers <- ContainerDeclarations (ContainerField COMMA)* (ContainerField / ContainerDeclarations) ContainerDeclarations <- TestDecl ContainerDeclarations / TopLevelComptime ContainerDeclarations / doc_comment? KEYWORD_pub? TopLevelDecl ContainerDeclarations / TestDecl <- doc_comment? KEYWORD_test STRINGLITERALSINGLE? Block TopLevelComptime <- doc_comment? KEYWORD_comptime BlockExpr TopLevelDecl <- (KEYWORD_export / KEYWORD_extern STRINGLITERALSINGLE? / (KEYWORD_inline / KEYWORD_noinline))? FnProto (SEMICOLON / Block) / (KEYWORD_export / KEYWORD_extern STRINGLITERALSINGLE?)? KEYWORD_threadlocal? VarDecl / KEYWORD_usingnamespace Expr SEMICOLON FnProto <- KEYWORD_fn IDENTIFIER? LPAREN ParamDeclList RPAREN ByteAlign? LinkSection? CallConv? EXCLAMATIONMARK? TypeExpr VarDecl <- (KEYWORD_const / KEYWORD_var) IDENTIFIER (COLON TypeExpr)? ByteAlign? LinkSection? (EQUAL Expr)? SEMICOLON ContainerField <- doc_comment? KEYWORD_comptime? IDENTIFIER (COLON (KEYWORD_anytype / TypeExpr) ByteAlign?)? (EQUAL Expr)? # *** Block Level *** Statement <- KEYWORD_comptime? VarDecl / KEYWORD_comptime BlockExprStatement / KEYWORD_nosuspend BlockExprStatement / KEYWORD_suspend BlockExprStatement / KEYWORD_defer BlockExprStatement / KEYWORD_errdefer Payload? BlockExprStatement / IfStatement / LabeledStatement / SwitchExpr / AssignExpr SEMICOLON IfStatement <- IfPrefix BlockExpr ( KEYWORD_else Payload? Statement )? / IfPrefix AssignExpr ( SEMICOLON / KEYWORD_else Payload? Statement ) LabeledStatement <- BlockLabel? (Block / LoopStatement) LoopStatement <- KEYWORD_inline? (ForStatement / WhileStatement) ForStatement <- ForPrefix BlockExpr ( KEYWORD_else Statement )? / ForPrefix AssignExpr ( SEMICOLON / KEYWORD_else Statement ) WhileStatement <- WhilePrefix BlockExpr ( KEYWORD_else Payload? Statement )? / WhilePrefix AssignExpr ( SEMICOLON / KEYWORD_else Payload? Statement ) BlockExprStatement <- BlockExpr / AssignExpr SEMICOLON BlockExpr <- BlockLabel? Block # *** Expression Level *** AssignExpr <- Expr (AssignOp Expr)? Expr <- BoolOrExpr BoolOrExpr <- BoolAndExpr (KEYWORD_or BoolAndExpr)* BoolAndExpr <- CompareExpr (KEYWORD_and CompareExpr)* CompareExpr <- BitwiseExpr (CompareOp BitwiseExpr)? BitwiseExpr <- BitShiftExpr (BitwiseOp BitShiftExpr)* BitShiftExpr <- AdditionExpr (BitShiftOp AdditionExpr)* AdditionExpr <- MultiplyExpr (AdditionOp MultiplyExpr)* MultiplyExpr <- PrefixExpr (MultiplyOp PrefixExpr)* PrefixExpr <- PrefixOp* PrimaryExpr PrimaryExpr <- AsmExpr / IfExpr / KEYWORD_break BreakLabel? Expr? / KEYWORD_comptime Expr / KEYWORD_nosuspend Expr / KEYWORD_continue BreakLabel? / KEYWORD_resume Expr / KEYWORD_return Expr? / BlockLabel? LoopExpr / Block / CurlySuffixExpr IfExpr <- IfPrefix Expr (KEYWORD_else Payload? Expr)? Block <- LBRACE Statement* RBRACE LoopExpr <- KEYWORD_inline? (ForExpr / WhileExpr) ForExpr <- ForPrefix Expr (KEYWORD_else Expr)? WhileExpr <- WhilePrefix Expr (KEYWORD_else Payload? Expr)? CurlySuffixExpr <- TypeExpr InitList? InitList <- LBRACE FieldInit (COMMA FieldInit)* COMMA? RBRACE / LBRACE Expr (COMMA Expr)* COMMA? RBRACE / LBRACE RBRACE TypeExpr <- PrefixTypeOp* ErrorUnionExpr ErrorUnionExpr <- SuffixExpr (EXCLAMATIONMARK TypeExpr)? SuffixExpr <- KEYWORD_async PrimaryTypeExpr SuffixOp* FnCallArguments / PrimaryTypeExpr (SuffixOp / FnCallArguments)* PrimaryTypeExpr <- BUILTINIDENTIFIER FnCallArguments / CHAR_LITERAL / ContainerDecl / DOT IDENTIFIER / DOT InitList / ErrorSetDecl / FLOAT / FnProto / GroupedExpr / LabeledTypeExpr / IDENTIFIER / IfTypeExpr / INTEGER / KEYWORD_comptime TypeExpr / KEYWORD_error DOT IDENTIFIER / KEYWORD_anyframe / KEYWORD_unreachable / STRINGLITERAL / SwitchExpr ContainerDecl <- (KEYWORD_extern / KEYWORD_packed)? ContainerDeclAuto ErrorSetDecl <- KEYWORD_error LBRACE IdentifierList RBRACE GroupedExpr <- LPAREN Expr RPAREN IfTypeExpr <- IfPrefix TypeExpr (KEYWORD_else Payload? TypeExpr)? LabeledTypeExpr <- BlockLabel Block / BlockLabel? LoopTypeExpr LoopTypeExpr <- KEYWORD_inline? (ForTypeExpr / WhileTypeExpr) ForTypeExpr <- ForPrefix TypeExpr (KEYWORD_else TypeExpr)? WhileTypeExpr <- WhilePrefix TypeExpr (KEYWORD_else Payload? TypeExpr)? SwitchExpr <- KEYWORD_switch LPAREN Expr RPAREN LBRACE SwitchProngList RBRACE # *** Assembly *** AsmExpr <- KEYWORD_asm KEYWORD_volatile? LPAREN Expr AsmOutput? RPAREN AsmOutput <- COLON AsmOutputList AsmInput? AsmOutputItem <- LBRACKET IDENTIFIER RBRACKET STRINGLITERAL LPAREN (MINUSRARROW TypeExpr / IDENTIFIER) RPAREN AsmInput <- COLON AsmInputList AsmClobbers? AsmInputItem <- LBRACKET IDENTIFIER RBRACKET STRINGLITERAL LPAREN Expr RPAREN AsmClobbers <- COLON StringList # *** Helper grammar *** BreakLabel <- COLON IDENTIFIER BlockLabel <- IDENTIFIER COLON FieldInit <- DOT IDENTIFIER EQUAL Expr WhileContinueExpr <- COLON LPAREN AssignExpr RPAREN LinkSection <- KEYWORD_linksection LPAREN Expr RPAREN # Fn specific CallConv <- KEYWORD_callconv LPAREN Expr RPAREN ParamDecl <- doc_comment? (KEYWORD_noalias / KEYWORD_comptime)? (IDENTIFIER COLON)? ParamType / DOT3 ParamType <- KEYWORD_anytype / TypeExpr # Control flow prefixes IfPrefix <- KEYWORD_if LPAREN Expr RPAREN PtrPayload? WhilePrefix <- KEYWORD_while LPAREN Expr RPAREN PtrPayload? WhileContinueExpr? ForPrefix <- KEYWORD_for LPAREN Expr RPAREN PtrIndexPayload # Payloads Payload <- PIPE IDENTIFIER PIPE PtrPayload <- PIPE ASTERISK? IDENTIFIER PIPE PtrIndexPayload <- PIPE ASTERISK? IDENTIFIER (COMMA IDENTIFIER)? PIPE # Switch specific SwitchProng <- SwitchCase EQUALRARROW PtrPayload? AssignExpr SwitchCase <- SwitchItem (COMMA SwitchItem)* COMMA? / KEYWORD_else SwitchItem <- Expr (DOT3 Expr)? # Operators AssignOp <- ASTERISKEQUAL / SLASHEQUAL / PERCENTEQUAL / PLUSEQUAL / MINUSEQUAL / LARROW2EQUAL / RARROW2EQUAL / AMPERSANDEQUAL / CARETEQUAL / PIPEEQUAL / ASTERISKPERCENTEQUAL / PLUSPERCENTEQUAL / MINUSPERCENTEQUAL / EQUAL CompareOp <- EQUALEQUAL / EXCLAMATIONMARKEQUAL / LARROW / RARROW / LARROWEQUAL / RARROWEQUAL BitwiseOp <- AMPERSAND / CARET / PIPE / KEYWORD_orelse / KEYWORD_catch Payload? BitShiftOp <- LARROW2 / RARROW2 AdditionOp <- PLUS / MINUS / PLUS2 / PLUSPERCENT / MINUSPERCENT MultiplyOp <- PIPE2 / ASTERISK / SLASH / PERCENT / ASTERISK2 / ASTERISKPERCENT PrefixOp <- EXCLAMATIONMARK / MINUS / TILDE / MINUSPERCENT / AMPERSAND / KEYWORD_try / KEYWORD_await PrefixTypeOp <- QUESTIONMARK / KEYWORD_anyframe MINUSRARROW / SliceTypeStart (ByteAlign / KEYWORD_const / KEYWORD_volatile / KEYWORD_allowzero)* / PtrTypeStart (KEYWORD_align LPAREN Expr (COLON INTEGER COLON INTEGER)? RPAREN / KEYWORD_const / KEYWORD_volatile / KEYWORD_allowzero)* / ArrayTypeStart SuffixOp <- LBRACKET Expr (DOT2 (Expr? (COLON Expr)?)?)? RBRACKET / DOT IDENTIFIER / DOTASTERISK / DOTQUESTIONMARK FnCallArguments <- LPAREN ExprList RPAREN # Ptr specific SliceTypeStart <- LBRACKET (COLON Expr)? RBRACKET PtrTypeStart <- ASTERISK / ASTERISK2 / LBRACKET ASTERISK (LETTERC / COLON Expr)? RBRACKET ArrayTypeStart <- LBRACKET Expr (COLON Expr)? RBRACKET # ContainerDecl specific ContainerDeclAuto <- ContainerDeclType LBRACE container_doc_comment? ContainerMembers RBRACE ContainerDeclType <- KEYWORD_struct / KEYWORD_opaque / KEYWORD_enum (LPAREN Expr RPAREN)? / KEYWORD_union (LPAREN (KEYWORD_enum (LPAREN Expr RPAREN)? / Expr) RPAREN)? # Alignment ByteAlign <- KEYWORD_align LPAREN Expr RPAREN # Lists IdentifierList <- (doc_comment? IDENTIFIER COMMA)* (doc_comment? IDENTIFIER)? SwitchProngList <- (SwitchProng COMMA)* SwitchProng? AsmOutputList <- (AsmOutputItem COMMA)* AsmOutputItem? AsmInputList <- (AsmInputItem COMMA)* AsmInputItem? StringList <- (STRINGLITERAL COMMA)* STRINGLITERAL? ParamDeclList <- (ParamDecl COMMA)* ParamDecl? ExprList <- (Expr COMMA)* Expr? # *** Tokens *** eof <- !. bin <- [01] bin_ <- '_'? bin oct <- [0-7] oct_ <- '_'? oct hex <- [0-9a-fA-F] hex_ <- '_'? hex dec <- [0-9] dec_ <- '_'? dec bin_int <- bin bin_* oct_int <- oct oct_* dec_int <- dec dec_* hex_int <- hex hex_* ox80_oxBF <- [\200-\277] oxF4 <- '\364' ox80_ox8F <- [\200-\217] oxF1_oxF3 <- [\361-\363] oxF0 <- '\360' ox90_0xBF <- [\220-\277] oxEE_oxEF <- [\356-\357] oxED <- '\355' ox80_ox9F <- [\200-\237] oxE1_oxEC <- [\341-\354] oxE0 <- '\340' oxA0_oxBF <- [\240-\277] oxC2_oxDF <- [\302-\337] # From https://lemire.me/blog/2018/05/09/how-quickly-can-you-check-that-a-string-is-valid-unicode-utf-8/ # First Byte Second Byte Third Byte Fourth Byte # [0x00,0x7F] # [0xC2,0xDF] [0x80,0xBF] # 0xE0 [0xA0,0xBF] [0x80,0xBF] # [0xE1,0xEC] [0x80,0xBF] [0x80,0xBF] # 0xED [0x80,0x9F] [0x80,0xBF] # [0xEE,0xEF] [0x80,0xBF] [0x80,0xBF] # 0xF0 [0x90,0xBF] [0x80,0xBF] [0x80,0xBF] # [0xF1,0xF3] [0x80,0xBF] [0x80,0xBF] [0x80,0xBF] # 0xF4 [0x80,0x8F] [0x80,0xBF] [0x80,0xBF] mb_utf8_literal <- oxF4 ox80_ox8F ox80_oxBF ox80_oxBF / oxF1_oxF3 ox80_oxBF ox80_oxBF ox80_oxBF / oxF0 ox90_0xBF ox80_oxBF ox80_oxBF / oxEE_oxEF ox80_oxBF ox80_oxBF / oxED ox80_ox9F ox80_oxBF / oxE1_oxEC ox80_oxBF ox80_oxBF / oxE0 oxA0_oxBF ox80_oxBF / oxC2_oxDF ox80_oxBF ascii_char_not_nl_slash_squote <- [\000-\011\013-\046-\050-\133\135-\177] char_escape <- "\\x" hex hex / "\\u{" hex+ "}" / "\\" [nr\\t'"] char_char <- mb_utf8_literal / char_escape / ascii_char_not_nl_slash_squote string_char <- char_escape / [^\\"\n] container_doc_comment <- ('//!' [^\n]* [ \n]*)+ doc_comment <- ('///' [^\n]* [ \n]*)+ line_comment <- '//' ![!/][^\n]* / '////' [^\n]* line_string <- ("\\\\" [^\n]* [ \n]*)+ skip <- ([ \n] / line_comment)* CHAR_LITERAL <- "'" char_char "'" skip FLOAT <- "0x" hex_int "." hex_int ([pP] [-+]? dec_int)? skip / dec_int "." dec_int ([eE] [-+]? dec_int)? skip / "0x" hex_int [pP] [-+]? dec_int skip / dec_int [eE] [-+]? dec_int skip INTEGER <- "0b" bin_int skip / "0o" oct_int skip / "0x" hex_int skip / dec_int skip STRINGLITERALSINGLE <- "\"" string_char* "\"" skip STRINGLITERAL <- STRINGLITERALSINGLE / (line_string skip)+ IDENTIFIER <- !keyword [A-Za-z_] [A-Za-z0-9_]* skip / "@\"" string_char* "\"" skip BUILTINIDENTIFIER <- "@"[A-Za-z_][A-Za-z0-9_]* skip AMPERSAND <- '&' ![=] skip AMPERSANDEQUAL <- '&=' skip ASTERISK <- '*' ![*%=] skip ASTERISK2 <- '**' skip ASTERISKEQUAL <- '*=' skip ASTERISKPERCENT <- '*%' ![=] skip ASTERISKPERCENTEQUAL <- '*%=' skip CARET <- '^' ![=] skip CARETEQUAL <- '^=' skip COLON <- ':' skip COMMA <- ',' skip DOT <- '.' ![*.?] skip DOT2 <- '..' ![.] skip DOT3 <- '...' skip DOTASTERISK <- '.*' skip DOTQUESTIONMARK <- '.?' skip EQUAL <- '=' ![>=] skip EQUALEQUAL <- '==' skip EQUALRARROW <- '=>' skip EXCLAMATIONMARK <- '!' ![=] skip EXCLAMATIONMARKEQUAL <- '!=' skip LARROW <- '<' ![<=] skip LARROW2 <- '<<' ![=] skip LARROW2EQUAL <- '<<=' skip LARROWEQUAL <- '<=' skip LBRACE <- '{' skip LBRACKET <- '[' skip LPAREN <- '(' skip MINUS <- '-' ![%=>] skip MINUSEQUAL <- '-=' skip MINUSPERCENT <- '-%' ![=] skip MINUSPERCENTEQUAL <- '-%=' skip MINUSRARROW <- '->' skip PERCENT <- '%' ![=] skip PERCENTEQUAL <- '%=' skip PIPE <- '|' ![|=] skip PIPE2 <- '||' skip PIPEEQUAL <- '|=' skip PLUS <- '+' ![%+=] skip PLUS2 <- '++' skip PLUSEQUAL <- '+=' skip PLUSPERCENT <- '+%' ![=] skip PLUSPERCENTEQUAL <- '+%=' skip LETTERC <- 'c' skip QUESTIONMARK <- '?' skip RARROW <- '>' ![>=] skip RARROW2 <- '>>' ![=] skip RARROW2EQUAL <- '>>=' skip RARROWEQUAL <- '>=' skip RBRACE <- '}' skip RBRACKET <- ']' skip RPAREN <- ')' skip SEMICOLON <- ';' skip SLASH <- '/' ![=] skip SLASHEQUAL <- '/=' skip TILDE <- '~' skip end_of_word <- ![a-zA-Z0-9_] skip KEYWORD_align <- 'align' end_of_word KEYWORD_allowzero <- 'allowzero' end_of_word KEYWORD_and <- 'and' end_of_word KEYWORD_anyframe <- 'anyframe' end_of_word KEYWORD_anytype <- 'anytype' end_of_word KEYWORD_asm <- 'asm' end_of_word KEYWORD_async <- 'async' end_of_word KEYWORD_await <- 'await' end_of_word KEYWORD_break <- 'break' end_of_word KEYWORD_callconv <- 'callconv' end_of_word KEYWORD_catch <- 'catch' end_of_word KEYWORD_comptime <- 'comptime' end_of_word KEYWORD_const <- 'const' end_of_word KEYWORD_continue <- 'continue' end_of_word KEYWORD_defer <- 'defer' end_of_word KEYWORD_else <- 'else' end_of_word KEYWORD_enum <- 'enum' end_of_word KEYWORD_errdefer <- 'errdefer' end_of_word KEYWORD_error <- 'error' end_of_word KEYWORD_export <- 'export' end_of_word KEYWORD_extern <- 'extern' end_of_word KEYWORD_fn <- 'fn' end_of_word KEYWORD_for <- 'for' end_of_word KEYWORD_if <- 'if' end_of_word KEYWORD_inline <- 'inline' end_of_word KEYWORD_noalias <- 'noalias' end_of_word KEYWORD_nosuspend <- 'nosuspend' end_of_word KEYWORD_noinline <- 'noinline' end_of_word KEYWORD_opaque <- 'opaque' end_of_word KEYWORD_or <- 'or' end_of_word KEYWORD_orelse <- 'orelse' end_of_word KEYWORD_packed <- 'packed' end_of_word KEYWORD_pub <- 'pub' end_of_word KEYWORD_resume <- 'resume' end_of_word KEYWORD_return <- 'return' end_of_word KEYWORD_linksection <- 'linksection' end_of_word KEYWORD_struct <- 'struct' end_of_word KEYWORD_suspend <- 'suspend' end_of_word KEYWORD_switch <- 'switch' end_of_word KEYWORD_test <- 'test' end_of_word KEYWORD_threadlocal <- 'threadlocal' end_of_word KEYWORD_try <- 'try' end_of_word KEYWORD_union <- 'union' end_of_word KEYWORD_unreachable <- 'unreachable' end_of_word KEYWORD_usingnamespace <- 'usingnamespace' end_of_word KEYWORD_var <- 'var' end_of_word KEYWORD_volatile <- 'volatile' end_of_word KEYWORD_while <- 'while' end_of_word keyword <- KEYWORD_align / KEYWORD_allowzero / KEYWORD_and / KEYWORD_anyframe / KEYWORD_anytype / KEYWORD_asm / KEYWORD_async / KEYWORD_await / KEYWORD_break / KEYWORD_callconv / KEYWORD_catch / KEYWORD_comptime / KEYWORD_const / KEYWORD_continue / KEYWORD_defer / KEYWORD_else / KEYWORD_enum / KEYWORD_errdefer / KEYWORD_error / KEYWORD_export / KEYWORD_extern / KEYWORD_fn / KEYWORD_for / KEYWORD_if / KEYWORD_inline / KEYWORD_noalias / KEYWORD_nosuspend / KEYWORD_noinline / KEYWORD_opaque / KEYWORD_or / KEYWORD_orelse / KEYWORD_packed / KEYWORD_pub / KEYWORD_resume / KEYWORD_return / KEYWORD_linksection / KEYWORD_struct / KEYWORD_suspend / KEYWORD_switch / KEYWORD_test / KEYWORD_threadlocal / KEYWORD_try / KEYWORD_union / KEYWORD_unreachable / KEYWORD_usingnamespace / KEYWORD_var / KEYWORD_volatile / KEYWORD_while
© 2015–2021, Zig contributors
https://ziglang.org/documentation/0.9.0/