Defined in header <cmath> | ||
---|---|---|
int | ||
(1) | ||
float scalbn ( float num, int exp ); double scalbn ( double num, int exp ); long double scalbn ( long double num, int exp ); | (since C++11) (until C++23) | |
constexpr /* floating-point-type */ scalbn ( /* floating-point-type */ num, int exp ); | (since C++23) | |
float scalbnf( float num, int exp ); | (2) | (since C++11) (constexpr since C++23) |
long double scalbnl( long double num, int exp ); | (3) | (since C++11) (constexpr since C++23) |
long | ||
(4) | ||
float scalbln ( float num, long exp ); double scalbln ( double num, long exp ); long double scalbln ( long double num, long exp ); | (since C++11) (until C++23) | |
constexpr /* floating-point-type */ scalbln ( /* floating-point-type */ num, long exp ); | (since C++23) | |
float scalblnf( float num, long exp ); | (5) | (since C++11) (constexpr since C++23) |
long double scalblnl( long double num, long exp ); | (6) | (since C++11) (constexpr since C++23) |
Additional overloads | ||
Defined in header <cmath> | ||
template< class Integer > double scalbn( Integer num, int exp ); | (A) | (since C++11) (constexpr since C++23) |
template< class Integer > double scalbln( Integer num, long exp ); | (B) | (since C++11) (constexpr since C++23) |
num
by FLT_RADIX
raised to power exp
. The library provides overloads of std::scalbn
and std::scalbln
for all cv-unqualified floating-point types as the type of the parameter num
. (since C++23)
double
num | - | floating-point or integer value |
exp | - | integer value |
If no errors occur, num
multiplied by FLT_RADIX
to the power of exp
(num×FLT_RADIXexp
) is returned.
If a range error due to overflow occurs, ±HUGE_VAL
, ±HUGE_VALF
, or ±HUGE_VALL
is returned.
If a range error due to underflow occurs, the correct result (after rounding) is returned.
Errors are reported as specified in math_errhandling
.
If the implementation supports IEEE floating-point arithmetic (IEC 60559),
FE_INEXACT
is never raised (the result is exact) num
is ±0, it is returned, unmodified num
is ±∞, it is returned, unmodified exp
is 0, then num
is returned, unmodified num
is NaN, NaN is returned On binary systems (where FLT_RADIX
is 2
), std::scalbn
is equivalent to std::ldexp
.
Although std::scalbn
and std::scalbln
are specified to perform the operation efficiently, on many implementations they are less efficient than multiplication or division by a power of two using arithmetic operators.
The function name stands for "new scalb", where scalb
was an older non-standard function whose second argument had floating-point type.
The std::scalbln
function is provided because the factor required to scale from the smallest positive floating-point value to the largest finite one may be greater than 32767, the standard-guaranteed INT_MAX
. In particular, for the 80-bit long double, the factor is 32828.
The GNU implementation does not set errno
regardless of math_errhandling
.
The additional overloads are not required to be provided exactly as (A,B). They only need to be sufficient to ensure that for their argument num
of integer type:
std::scalbn(num, exp)
has the same effect as std::scalbn(static_cast<double>(num), exp)
. std::scalbln(num, exp)
has the same effect as std::scalbln(static_cast<double>(num), exp)
. #include <cerrno> #include <cfenv> #include <cmath> #include <cstring> #include <iostream> // #pragma STDC FENV_ACCESS ON int main() { std::cout << "scalbn(7, -4) = " << std::scalbn(7, -4) << '\n' << "scalbn(1, -1074) = " << std::scalbn(1, -1074) << " (minimum positive subnormal double)\n" << "scalbn(nextafter(1,0), 1024) = " << std::scalbn(std::nextafter(1,0), 1024) << " (largest finite double)\n"; // special values std::cout << "scalbn(-0, 10) = " << std::scalbn(-0.0, 10) << '\n' << "scalbn(-Inf, -1) = " << std::scalbn(-INFINITY, -1) << '\n'; // error handling errno = 0; std::feclearexcept(FE_ALL_EXCEPT); std::cout << "scalbn(1, 1024) = " << std::scalbn(1, 1024) << '\n'; if (errno == ERANGE) std::cout << " errno == ERANGE: " << std::strerror(errno) << '\n'; if (std::fetestexcept(FE_OVERFLOW)) std::cout << " FE_OVERFLOW raised\n"; }
Possible output:
scalbn(7, -4) = 0.4375 scalbn(1, -1074) = 4.94066e-324 (minimum positive subnormal double) scalbn(nextafter(1,0), 1024) = 1.79769e+308 (largest finite double) scalbn(-0, 10) = -0 scalbn(-Inf, -1) = -inf scalbn(1, 1024) = inf errno == ERANGE: Numerical result out of range FE_OVERFLOW raised
(C++11)(C++11) | decomposes a number into significand and a power of 2 (function) |
(C++11)(C++11) | multiplies a number by 2 raised to a power (function) |
C documentation for scalbn |
© cppreference.com
Licensed under the Creative Commons Attribution-ShareAlike Unported License v3.0.
https://en.cppreference.com/w/cpp/numeric/math/scalbn