W3cubDocs

/Eigen3

Eigen::CholmodSimplicialLLT

template<typename _MatrixType, int _UpLo = Lower>
class Eigen::CholmodSimplicialLLT< _MatrixType, _UpLo >

A simplicial direct Cholesky (LLT) factorization and solver based on Cholmod.

This class allows to solve for A.X = B sparse linear problems via a simplicial LL^T Cholesky factorization using the Cholmod library. This simplicial variant is equivalent to Eigen's built-in SimplicialLLT class. Therefore, it has little practical interest. The sparse matrix A must be selfadjoint and positive definite. The vectors or matrices X and B can be either dense or sparse.

Template Parameters
_MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
_UpLo the triangular part that will be used for the computations. It can be Lower or Upper. Default is Lower.

This class follows the sparse solver concept .

This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed.

Warning
Only double precision real and complex scalar types are supported by Cholmod.
See also
Sparse solver concept, class CholmodSupernodalLLT, class SimplicialLLT
- Public Member Functions inherited from Eigen::CholmodBase< _MatrixType, Lower, CholmodSimplicialLLT< _MatrixType, Lower > >
void analyzePattern (const MatrixType &matrix)
cholmod_common & cholmod ()
CholmodSimplicialLLT< _MatrixType, Lower > & compute (const MatrixType &matrix)
Scalar determinant () const
void factorize (const MatrixType &matrix)
ComputationInfo info () const
Reports whether previous computation was successful. More...
Scalar logDeterminant () const
CholmodSimplicialLLT< _MatrixType, Lower > & setShift (const RealScalar &offset)
- Public Member Functions inherited from Eigen::SparseSolverBase< Derived >
template<typename Rhs >
const Solve< Derived, Rhs > solve (const MatrixBase< Rhs > &b) const
template<typename Rhs >
const Solve< Derived, Rhs > solve (const SparseMatrixBase< Rhs > &b) const
SparseSolverBase ()

The documentation for this class was generated from the following file: