Rotation given by a cosine-sine pair.
This is defined in the Jacobi module.
#include <Eigen/Jacobi>
This class represents a Jacobi or Givens rotation. This is a 2D rotation in the plane J
of angle \( \theta \) defined by its cosine c
and sine s
as follow: \( J = \left ( \begin{array}{cc} c & \overline s \\ -s & \overline c \end{array} \right ) \)
You can apply the respective counter-clockwise rotation to a column vector v
by applying its adjoint on the left: \( v = J^* v \) that translates to the following Eigen code:
v.applyOnTheLeft(J.adjoint());
JacobiRotation | adjoint () const |
JacobiRotation () | |
JacobiRotation (const Scalar &c, const Scalar &s) | |
void | makeGivens (const Scalar &p, const Scalar &q, Scalar *r=0) |
template<typename Derived > | |
bool | makeJacobi (const MatrixBase< Derived > &, Index p, Index q) |
bool | makeJacobi (const RealScalar &x, const Scalar &y, const RealScalar &z) |
JacobiRotation | operator* (const JacobiRotation &other) |
JacobiRotation | transpose () const |
| inline |
Default constructor without any initialization.
| inline |
Construct a planar rotation from a cosine-sine pair (c, s
).
| inline |
Returns the adjoint transformation
void Eigen::JacobiRotation< Scalar >::makeGivens | ( | const Scalar & | p, |
const Scalar & | q, | ||
Scalar * |
r = 0 | ||
) |
Makes *this
as a Givens rotation G
such that applying \( G^* \) to the left of the vector \( V = \left ( \begin{array}{c} p \\ q \end{array} \right )\) yields: \( G^* V = \left ( \begin{array}{c} r \\ 0 \end{array} \right )\).
The value of r is returned if r is not null (the default is null). Also note that G is built such that the cosine is always real.
Example:
Vector2f v = Vector2f::Random(); JacobiRotation<float> G; G.makeGivens(v.x(), v.y()); cout << "Here is the vector v:" << endl << v << endl; v.applyOnTheLeft(0, 1, G.adjoint()); cout << "Here is the vector J' * v:" << endl << v << endl;
Output:
Here is the vector v: 0.68 -0.211 Here is the vector J' * v: 0.712 0
This function implements the continuous Givens rotation generation algorithm found in Anderson (2000), Discontinuous Plane Rotations and the Symmetric Eigenvalue Problem. LAPACK Working Note 150, University of Tennessee, UT-CS-00-454, December 4, 2000.
| inline |
Makes *this
as a Jacobi rotation J
such that applying J on both the right and left sides of the 2x2 selfadjoint matrix \( B = \left ( \begin{array}{cc} \text{this}_{pp} & \text{this}_{pq} \\ (\text{this}_{pq})^* & \text{this}_{qq} \end{array} \right )\) yields a diagonal matrix \( A = J^* B J \)
Example:
Matrix2f m = Matrix2f::Random(); m = (m + m.adjoint()).eval(); JacobiRotation<float> J; J.makeJacobi(m, 0, 1); cout << "Here is the matrix m:" << endl << m << endl; m.applyOnTheLeft(0, 1, J.adjoint()); m.applyOnTheRight(0, 1, J); cout << "Here is the matrix J' * m * J:" << endl << m << endl;
Output:
Here is the matrix m: 1.36 0.355 0.355 1.19 Here is the matrix J' * m * J: 1.64 0 0 0.913
bool Eigen::JacobiRotation< Scalar >::makeJacobi | ( | const RealScalar & | x, |
const Scalar & | y, | ||
const RealScalar & | z | ||
) |
Makes *this
as a Jacobi rotation J such that applying J on both the right and left sides of the selfadjoint 2x2 matrix \( B = \left ( \begin{array}{cc} x & y \\ \overline y & z \end{array} \right )\) yields a diagonal matrix \( A = J^* B J \)
| inline |
Concatenates two planar rotation
| inline |
Returns the transposed transformation
© Eigen.
Licensed under the MPL2 License.
https://eigen.tuxfamily.org/dox/classEigen_1_1JacobiRotation.html