Eigen::SimplicialLDLT
        
template<typename _MatrixType, int _UpLo, typename _Ordering>
 class Eigen::SimplicialLDLT< _MatrixType, _UpLo, _Ordering >
 A direct sparse LDLT Cholesky factorizations without square root. 
 This class provides a LDL^T Cholesky factorizations without square root of sparse matrices that are selfadjoint and positive definite. The factorization allows for solving A.X = B where X and B can be either dense or sparse.
 In order to reduce the fill-in, a symmetric permutation P is applied prior to the factorization such that the factorized matrix is P A P^-1.
 
- Template Parameters
-   
| _MatrixType | the type of the sparse matrix A, it must be a SparseMatrix<> |  
| _UpLo | the triangular part that will be used for the computations. It can be Lower or Upper. Default is Lower. |  
| _Ordering | The ordering method to use, either AMDOrdering<> or NaturalOrdering<>. Default is AMDOrdering<> |  
 
This class follows the sparse solver concept .
 
- See also
- class SimplicialLLT, class AMDOrdering, class NaturalOrdering 
   
   |  | 
 
| void | analyzePattern (const MatrixType &a) | 
 |  | 
 
| SimplicialLDLT & | compute (const MatrixType &matrix) | 
 |  | 
 
| Scalar | determinant () const | 
 |  | 
 
| void | factorize (const MatrixType &a) | 
 |  | 
 
| const MatrixL | matrixL () const | 
 |  | 
 
| const MatrixU | matrixU () const | 
 |  | 
 
|  | SimplicialLDLT () | 
 |  | 
 
|  | SimplicialLDLT (const MatrixType &matrix) | 
 |  | 
 
| const VectorType | vectorD () const | 
 |  | 
 |  Public Member Functions inherited from Eigen::SimplicialCholeskyBase< SimplicialLDLT< _MatrixType, _UpLo, _Ordering > > | 
 
| ComputationInfo | info () const | 
 
|  | Reports whether previous computation was successful. More... 
 | 
 |  | 
 
| const PermutationMatrix< Dynamic, Dynamic, StorageIndex > & | permutationP () const | 
 |  | 
 
| const PermutationMatrix< Dynamic, Dynamic, StorageIndex > & | permutationPinv () const | 
 |  | 
 
| SimplicialLDLT< _MatrixType, _UpLo, _Ordering > & | setShift (const RealScalar &offset, const RealScalar &scale=1) | 
 |  | 
 
|  | SimplicialCholeskyBase () | 
 |  | 
 |  Public Member Functions inherited from Eigen::SparseSolverBase< SimplicialLDLT< _MatrixType, _UpLo, _Ordering > > | 
 
| const Solve< SimplicialLDLT< _MatrixType, _UpLo, _Ordering >, Rhs > | solve (const MatrixBase< Rhs > &b) const | 
 |  | 
 
| const Solve< SimplicialLDLT< _MatrixType, _UpLo, _Ordering >, Rhs > | solve (const SparseMatrixBase< Rhs > &b) const | 
 |  | 
 
|  | SparseSolverBase () | 
 |  | 
 
   SimplicialLDLT() [1/2]
    template<typename _MatrixType , int _UpLo, typename _Ordering > 
   
    SimplicialLDLT() [2/2]
    template<typename _MatrixType , int _UpLo, typename _Ordering > 
   
 Constructs and performs the LLT factorization of matrix 
       analyzePattern()
    template<typename _MatrixType , int _UpLo, typename _Ordering > 
   
 Performs a symbolic decomposition on the sparcity of matrix.
 This function is particularly useful when solving for several problems having the same structure.
 
- See also
- 
factorize() 
     compute()
    template<typename _MatrixType , int _UpLo, typename _Ordering > 
   
 Computes the sparse Cholesky decomposition of matrix 
      determinant()
    template<typename _MatrixType , int _UpLo, typename _Ordering > 
   
 
- Returns
- the determinant of the underlying matrix from the current factorization 
     factorize()
    template<typename _MatrixType , int _UpLo, typename _Ordering > 
   
 Performs a numeric decomposition of matrix 
 The given matrix must has the same sparcity than the matrix on which the symbolic decomposition has been performed.
 
- See also
- 
analyzePattern() 
     matrixL()
    template<typename _MatrixType , int _UpLo, typename _Ordering > 
   
 
- Returns
- an expression of the factor L 
     matrixU()
    template<typename _MatrixType , int _UpLo, typename _Ordering > 
   
 
- Returns
- an expression of the factor U (= L^*) 
     vectorD()
    template<typename _MatrixType , int _UpLo, typename _Ordering > 
   
 
- Returns
- a vector expression of the diagonal D 
    
The documentation for this class was generated from the following file: