W3cubDocs

/Eigen3

Eigen::Transform

template<typename _Scalar, int _Dim, int _Mode, int _Options>
class Eigen::Transform< _Scalar, _Dim, _Mode, _Options >

Represents an homogeneous transformation in a N dimensional space.

This is defined in the Geometry module.

#include <Eigen/Geometry> 
Template Parameters
_Scalar the scalar type, i.e., the type of the coefficients
_Dim the dimension of the space
_Mode the type of the transformation. Can be:
  • Affine: the transformation is stored as a (Dim+1)^2 matrix, where the last row is assumed to be [0 ... 0 1].
  • AffineCompact: the transformation is stored as a (Dim)x(Dim+1) matrix.
  • Projective: the transformation is stored as a (Dim+1)^2 matrix without any assumption.
  • Isometry: same as Affine with the additional assumption that the linear part represents a rotation. This assumption is exploited to speed up some functions such as inverse() and rotation().
_Options has the same meaning as in class Matrix. It allows to specify DontAlign and/or RowMajor. These Options are passed directly to the underlying matrix type.

The homography is internally represented and stored by a matrix which is available through the matrix() method. To understand the behavior of this class you have to think a Transform object as its internal matrix representation. The chosen convention is right multiply:

v' = T * v 

Therefore, an affine transformation matrix M is shaped like this:

\( \left( \begin{array}{cc} linear & translation\\ 0 ... 0 & 1 \end{array} \right) \)

Note that for a projective transformation the last row can be anything, and then the interpretation of different parts might be slightly different.

However, unlike a plain matrix, the Transform class provides many features simplifying both its assembly and usage. In particular, it can be composed with any other transformations (Transform,Translation,RotationBase,DiagonalMatrix) and can be directly used to transform implicit homogeneous vectors. All these operations are handled via the operator*. For the composition of transformations, its principle consists to first convert the right/left hand sides of the product to a compatible (Dim+1)^2 matrix and then perform a pure matrix product. Of course, internally, operator* tries to perform the minimal number of operations according to the nature of each terms. Likewise, when applying the transform to points, the latters are automatically promoted to homogeneous vectors before doing the matrix product. The conventions to homogeneous representations are performed as follow:

Translation t (Dim)x(1): \( \left( \begin{array}{cc} I & t \\ 0\,...\,0 & 1 \end{array} \right) \)

Rotation R (Dim)x(Dim): \( \left( \begin{array}{cc} R & 0\\ 0\,...\,0 & 1 \end{array} \right) \)

Scaling DiagonalMatrix S (Dim)x(Dim): \( \left( \begin{array}{cc} S & 0\\ 0\,...\,0 & 1 \end{array} \right) \)

Column point v (Dim)x(1): \( \left( \begin{array}{c} v\\ 1 \end{array} \right) \)

Set of column points V1...Vn (Dim)x(n): \( \left( \begin{array}{ccc} v_1 & ... & v_n\\ 1 & ... & 1 \end{array} \right) \)

The concatenation of a Transform object with any kind of other transformation always returns a Transform object.

A little exception to the "as pure matrix product" rule is the case of the transformation of non homogeneous vectors by an affine transformation. In that case the last matrix row can be ignored, and the product returns non homogeneous vectors.

Since, for instance, a Dim x Dim matrix is interpreted as a linear transformation, it is not possible to directly transform Dim vectors stored in a Dim x Dim matrix. The solution is either to use a Dim x Dynamic matrix or explicitly request a vector transformation by making the vector homogeneous:

m' = T * m.colwise().homogeneous();

Note that there is zero overhead.

Conversion methods from/to Qt's QMatrix and QTransform are available if the preprocessor token EIGEN_QT_SUPPORT is defined.

This class can be extended with the help of the plugin mechanism described on the page Extending MatrixBase (and other classes) by defining the preprocessor symbol EIGEN_TRANSFORM_PLUGIN.

See also
class Matrix, class Quaternion
typedef internal::conditional< int(Mode)==int(AffineCompact), MatrixType &, Block< MatrixType, Dim, HDim > >::type AffinePart
typedef internal::conditional< int(Mode)==int(AffineCompact), const MatrixType &, const Block< const MatrixType, Dim, HDim > >::type ConstAffinePart
typedef const Block< ConstMatrixType, Dim, Dim, int(Mode)==(AffineCompact) &&(int(Options)&RowMajor)==0 > ConstLinearPart
typedef const MatrixType ConstMatrixType
typedef const Block< ConstMatrixType, Dim, 1,!(internal::traits< MatrixType >::Flags &RowMajorBit)> ConstTranslationPart
typedef Eigen::Index Index
typedef Matrix< Scalar, Dim, Dim, Options > LinearMatrixType
typedef Block< MatrixType, Dim, Dim, int(Mode)==(AffineCompact) &&(int(Options)&RowMajor)==0 > LinearPart
typedef internal::make_proper_matrix_type< Scalar, Rows, HDim, Options >::type MatrixType
typedef _Scalar Scalar
typedef Transform< Scalar, Dim, TransformTimeDiagonalMode > TransformTimeDiagonalReturnType
typedef Block< MatrixType, Dim, 1,!(internal::traits< MatrixType >::Flags &RowMajorBit)> TranslationPart
typedef Translation< Scalar, Dim > TranslationType
typedef Matrix< Scalar, Dim, 1 > VectorType
AffinePart affine ()
ConstAffinePart affine () const
template<typename NewScalarType >
internal::cast_return_type< Transform, Transform< NewScalarType, Dim, Mode, Options > >::type cast () const
template<typename RotationMatrixType , typename ScalingMatrixType >
void computeRotationScaling (RotationMatrixType *rotation, ScalingMatrixType *scaling) const
template<typename ScalingMatrixType , typename RotationMatrixType >
void computeScalingRotation (ScalingMatrixType *scaling, RotationMatrixType *rotation) const
Scalar * data ()
const Scalar * data () const
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE (_Scalar, _Dim==Dynamic ? Dynamic :(_Dim+1) *(_Dim+1)) enum
template<typename PositionDerived , typename OrientationType , typename ScaleDerived >
Transform< Scalar, Dim, Mode, Options > & fromPositionOrientationScale (const MatrixBase< PositionDerived > &position, const OrientationType &orientation, const MatrixBase< ScaleDerived > &scale)
Transform inverse (TransformTraits traits=(TransformTraits) Mode) const
bool isApprox (const Transform &other, const typename NumTraits< Scalar >::Real &prec=NumTraits< Scalar >::dummy_precision()) const
LinearPart linear ()
ConstLinearPart linear () const
void makeAffine ()
MatrixType & matrix ()
const MatrixType & matrix () const
Scalar & operator() (Index row, Index col)
Scalar operator() (Index row, Index col) const
template<typename DiagonalDerived >
const TransformTimeDiagonalReturnType operator* (const DiagonalBase< DiagonalDerived > &b) const
template<typename OtherDerived >
const internal::transform_right_product_impl< Transform, OtherDerived >::ResultType operator* (const EigenBase< OtherDerived > &other) const
const Transform operator* (const Transform &other) const
template<int OtherMode, int OtherOptions>
internal::transform_transform_product_impl< Transform, Transform< Scalar, Dim, OtherMode, OtherOptions > >::ResultType operator* (const Transform< Scalar, Dim, OtherMode, OtherOptions > &other) const
template<typename OtherDerived >
Transform & operator= (const EigenBase< OtherDerived > &other)
Transform & operator= (const QMatrix &other)
Transform & operator= (const QTransform &other)
template<typename RotationType >
Transform< Scalar, Dim, Mode, Options > & prerotate (const RotationType &rotation)
template<typename OtherDerived >
Transform< Scalar, Dim, Mode, Options > & prescale (const MatrixBase< OtherDerived > &other)
Transform & prescale (const Scalar &s)
Transform & preshear (const Scalar &sx, const Scalar &sy)
template<typename OtherDerived >
Transform< Scalar, Dim, Mode, Options > & pretranslate (const MatrixBase< OtherDerived > &other)
template<typename RotationType >
Transform< Scalar, Dim, Mode, Options > & rotate (const RotationType &rotation)
RotationReturnType rotation () const
template<typename OtherDerived >
Transform< Scalar, Dim, Mode, Options > & scale (const MatrixBase< OtherDerived > &other)
Transform & scale (const Scalar &s)
void setIdentity ()
Transform & shear (const Scalar &sx, const Scalar &sy)
QMatrix toQMatrix (void) const
QTransform toQTransform (void) const
Transform ()
template<typename OtherDerived >
Transform (const EigenBase< OtherDerived > &other)
Transform (const QMatrix &other)
Transform (const QTransform &other)
template<typename OtherScalarType >
Transform (const Transform< OtherScalarType, Dim, Mode, Options > &other)
template<typename OtherDerived >
Transform< Scalar, Dim, Mode, Options > & translate (const MatrixBase< OtherDerived > &other)
TranslationPart translation ()
ConstTranslationPart translation () const
static const Transform Identity ()
Returns an identity transformation. More...

AffinePart

template<typename _Scalar , int _Dim, int _Mode, int _Options>
typedef internal::conditional<int(Mode)==int(AffineCompact), MatrixType&, Block<MatrixType,Dim,HDim> >::type Eigen::Transform< _Scalar, _Dim, _Mode, _Options >::AffinePart

type of read/write reference to the affine part of the transformation

ConstAffinePart

template<typename _Scalar , int _Dim, int _Mode, int _Options>
typedef internal::conditional<int(Mode)==int(AffineCompact), const MatrixType&, const Block<const MatrixType,Dim,HDim> >::type Eigen::Transform< _Scalar, _Dim, _Mode, _Options >::ConstAffinePart

type of read reference to the affine part of the transformation

ConstLinearPart

template<typename _Scalar , int _Dim, int _Mode, int _Options>
typedef const Block<ConstMatrixType,Dim,Dim,int(Mode)==(AffineCompact) && (int(Options)&RowMajor)==0> Eigen::Transform< _Scalar, _Dim, _Mode, _Options >::ConstLinearPart

type of read reference to the linear part of the transformation

ConstMatrixType

template<typename _Scalar , int _Dim, int _Mode, int _Options>
typedef const MatrixType Eigen::Transform< _Scalar, _Dim, _Mode, _Options >::ConstMatrixType

constified MatrixType

ConstTranslationPart

template<typename _Scalar , int _Dim, int _Mode, int _Options>
typedef const Block<ConstMatrixType,Dim,1,!(internal::traits<MatrixType>::Flags & RowMajorBit)> Eigen::Transform< _Scalar, _Dim, _Mode, _Options >::ConstTranslationPart

type of a read reference to the translation part of the rotation

Index

template<typename _Scalar , int _Dim, int _Mode, int _Options>
typedef Eigen::Index Eigen::Transform< _Scalar, _Dim, _Mode, _Options >::Index
Deprecated:
since Eigen 3.3

LinearMatrixType

template<typename _Scalar , int _Dim, int _Mode, int _Options>
typedef Matrix<Scalar,Dim,Dim,Options> Eigen::Transform< _Scalar, _Dim, _Mode, _Options >::LinearMatrixType

type of the matrix used to represent the linear part of the transformation

LinearPart

template<typename _Scalar , int _Dim, int _Mode, int _Options>
typedef Block<MatrixType,Dim,Dim,int(Mode)==(AffineCompact) && (int(Options)&RowMajor)==0> Eigen::Transform< _Scalar, _Dim, _Mode, _Options >::LinearPart

type of read/write reference to the linear part of the transformation

MatrixType

template<typename _Scalar , int _Dim, int _Mode, int _Options>
typedef internal::make_proper_matrix_type<Scalar,Rows,HDim,Options>::type Eigen::Transform< _Scalar, _Dim, _Mode, _Options >::MatrixType

type of the matrix used to represent the transformation

Scalar

template<typename _Scalar , int _Dim, int _Mode, int _Options>
typedef _Scalar Eigen::Transform< _Scalar, _Dim, _Mode, _Options >::Scalar

the scalar type of the coefficients

TransformTimeDiagonalReturnType

template<typename _Scalar , int _Dim, int _Mode, int _Options>
typedef Transform<Scalar,Dim,TransformTimeDiagonalMode> Eigen::Transform< _Scalar, _Dim, _Mode, _Options >::TransformTimeDiagonalReturnType

The return type of the product between a diagonal matrix and a transform

TranslationPart

template<typename _Scalar , int _Dim, int _Mode, int _Options>
typedef Block<MatrixType,Dim,1,!(internal::traits<MatrixType>::Flags & RowMajorBit)> Eigen::Transform< _Scalar, _Dim, _Mode, _Options >::TranslationPart

type of a read/write reference to the translation part of the rotation

TranslationType

template<typename _Scalar , int _Dim, int _Mode, int _Options>
typedef Translation<Scalar,Dim> Eigen::Transform< _Scalar, _Dim, _Mode, _Options >::TranslationType

corresponding translation type

VectorType

template<typename _Scalar , int _Dim, int _Mode, int _Options>
typedef Matrix<Scalar,Dim,1> Eigen::Transform< _Scalar, _Dim, _Mode, _Options >::VectorType

type of a vector

Transform() [1/5]

template<typename _Scalar , int _Dim, int _Mode, int _Options>
Eigen::Transform< _Scalar, _Dim, _Mode, _Options >::Transform ( )
inline

Default constructor without initialization of the meaningful coefficients. If Mode==Affine or Mode==Isometry, then the last row is set to [0 ... 0 1]

Transform() [2/5]

template<typename _Scalar , int _Dim, int _Mode, int _Options>
template<typename OtherDerived >
Eigen::Transform< _Scalar, _Dim, _Mode, _Options >::Transform ( const EigenBase< OtherDerived > & other )
inlineexplicit

Constructs and initializes a transformation from a Dim^2 or a (Dim+1)^2 matrix.

Transform() [3/5]

template<typename Scalar , int Dim, int Mode, int Options>
Eigen::Transform< Scalar, Dim, Mode, Options >::Transform ( const QMatrix & other )
inline

Initializes *this from a QMatrix assuming the dimension is 2.

This function is available only if the token EIGEN_QT_SUPPORT is defined.

Transform() [4/5]

template<typename Scalar , int Dim, int Mode, int Options>
Eigen::Transform< Scalar, Dim, Mode, Options >::Transform ( const QTransform< _Scalar, _Dim, _Mode, _Options > & other )
inline

Initializes *this from a QTransform assuming the dimension is 2.

This function is available only if the token EIGEN_QT_SUPPORT is defined.

Transform() [5/5]

template<typename _Scalar , int _Dim, int _Mode, int _Options>
template<typename OtherScalarType >
Eigen::Transform< _Scalar, _Dim, _Mode, _Options >::Transform ( const Transform< OtherScalarType, Dim, Mode, Options > & other )
inlineexplicit

Copy constructor with scalar type conversion

affine() [1/2]

template<typename _Scalar , int _Dim, int _Mode, int _Options>
AffinePart Eigen::Transform< _Scalar, _Dim, _Mode, _Options >::affine ( )
inline
Returns
a writable expression of the Dim x HDim affine part of the transformation

affine() [2/2]

template<typename _Scalar , int _Dim, int _Mode, int _Options>
ConstAffinePart Eigen::Transform< _Scalar, _Dim, _Mode, _Options >::affine ( ) const
inline
Returns
a read-only expression of the Dim x HDim affine part of the transformation

cast()

template<typename _Scalar , int _Dim, int _Mode, int _Options>
template<typename NewScalarType >
internal::cast_return_type<Transform,Transform<NewScalarType,Dim,Mode,Options> >::type Eigen::Transform< _Scalar, _Dim, _Mode, _Options >::cast ( ) const
inline
Returns
*this with scalar type casted to NewScalarType

Note that if NewScalarType is equal to the current scalar type of *this then this function smartly returns a const reference to *this.

computeRotationScaling()

template<typename Scalar , int Dim, int Mode, int Options>
template<typename RotationMatrixType , typename ScalingMatrixType >
void Eigen::Transform< Scalar, Dim, Mode, Options >::computeRotationScaling ( RotationMatrixType * rotation,
ScalingMatrixType * scaling
) const

decomposes the linear part of the transformation as a product rotation x scaling, the scaling being not necessarily positive.

If either pointer is zero, the corresponding computation is skipped.

This is defined in the SVD module.

#include <Eigen/SVD> 
See also
computeScalingRotation(), rotation(), class SVD

computeScalingRotation()

template<typename Scalar , int Dim, int Mode, int Options>
template<typename ScalingMatrixType , typename RotationMatrixType >
void Eigen::Transform< Scalar, Dim, Mode, Options >::computeScalingRotation ( ScalingMatrixType * scaling,
RotationMatrixType * rotation
) const

decomposes the linear part of the transformation as a product scaling x rotation, the scaling being not necessarily positive.

If either pointer is zero, the corresponding computation is skipped.

This is defined in the SVD module.

#include <Eigen/SVD> 
See also
computeRotationScaling(), rotation(), class SVD

data() [1/2]

template<typename _Scalar , int _Dim, int _Mode, int _Options>
Scalar* Eigen::Transform< _Scalar, _Dim, _Mode, _Options >::data ( )
inline
Returns
a non-const pointer to the column major internal matrix

data() [2/2]

template<typename _Scalar , int _Dim, int _Mode, int _Options>
const Scalar* Eigen::Transform< _Scalar, _Dim, _Mode, _Options >::data ( ) const
inline
Returns
a const pointer to the column major internal matrix

EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE()

template<typename _Scalar , int _Dim, int _Mode, int _Options>
Eigen::Transform< _Scalar, _Dim, _Mode, _Options >::EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE ( _Scalar ,
_Dim = =Dynamic ? Dynamic : (_Dim+1)*(_Dim+1)
)
inline

< space dimension in which the transformation holds

< size of a respective homogeneous vector

fromPositionOrientationScale()

template<typename _Scalar , int _Dim, int _Mode, int _Options>
template<typename PositionDerived , typename OrientationType , typename ScaleDerived >
Transform<Scalar,Dim,Mode,Options>& Eigen::Transform< _Scalar, _Dim, _Mode, _Options >::fromPositionOrientationScale ( const MatrixBase< PositionDerived > & position,
const OrientationType & orientation,
const MatrixBase< ScaleDerived > & scale
)

Convenient method to set *this from a position, orientation and scale of a 3D object.

Identity()

template<typename _Scalar , int _Dim, int _Mode, int _Options>
static const Transform Eigen::Transform< _Scalar, _Dim, _Mode, _Options >::Identity ( )
inlinestatic

Returns an identity transformation.

inverse()

template<typename Scalar , int Dim, int Mode, int Options>
Transform< Scalar, Dim, Mode, Options > Eigen::Transform< Scalar, Dim, Mode, Options >::inverse ( TransformTraits hint = (TransformTraits)Mode ) const
inline
Returns
the inverse transformation according to some given knowledge on *this.
Parameters
hint allows to optimize the inversion process when the transformation is known to be not a general transformation (optional). The possible values are:
  • Projective if the transformation is not necessarily affine, i.e., if the last row is not guaranteed to be [0 ... 0 1]
  • Affine if the last row can be assumed to be [0 ... 0 1]
  • Isometry if the transformation is only a concatenations of translations and rotations. The default is the template class parameter Mode.
Warning
unless traits is always set to NoShear or NoScaling, this function requires the generic inverse method of MatrixBase defined in the LU module. If you forget to include this module, then you will get hard to debug linking errors.
See also
MatrixBase::inverse()

isApprox()

template<typename _Scalar , int _Dim, int _Mode, int _Options>
bool Eigen::Transform< _Scalar, _Dim, _Mode, _Options >::isApprox ( const Transform< _Scalar, _Dim, _Mode, _Options > & other,
const typename NumTraits< Scalar >::Real & prec = NumTraits<Scalar>::dummy_precision()
) const
inline
Returns
true if *this is approximately equal to other, within the precision determined by prec.
See also
MatrixBase::isApprox()

linear() [1/2]

template<typename _Scalar , int _Dim, int _Mode, int _Options>
LinearPart Eigen::Transform< _Scalar, _Dim, _Mode, _Options >::linear ( )
inline
Returns
a writable expression of the linear part of the transformation

linear() [2/2]

template<typename _Scalar , int _Dim, int _Mode, int _Options>
ConstLinearPart Eigen::Transform< _Scalar, _Dim, _Mode, _Options >::linear ( ) const
inline
Returns
a read-only expression of the linear part of the transformation

makeAffine()

template<typename _Scalar , int _Dim, int _Mode, int _Options>
void Eigen::Transform< _Scalar, _Dim, _Mode, _Options >::makeAffine ( )
inline

Sets the last row to [0 ... 0 1]

matrix() [1/2]

template<typename _Scalar , int _Dim, int _Mode, int _Options>
MatrixType& Eigen::Transform< _Scalar, _Dim, _Mode, _Options >::matrix ( )
inline
Returns
a writable expression of the transformation matrix

matrix() [2/2]

template<typename _Scalar , int _Dim, int _Mode, int _Options>
const MatrixType& Eigen::Transform< _Scalar, _Dim, _Mode, _Options >::matrix ( ) const
inline
Returns
a read-only expression of the transformation matrix

operator()() [1/2]

template<typename _Scalar , int _Dim, int _Mode, int _Options>
Scalar& Eigen::Transform< _Scalar, _Dim, _Mode, _Options >::operator() ( Index row,
Index col
)
inline

shortcut for m_matrix(row,col);

See also
MatrixBase::operator(Index,Index)

operator()() [2/2]

template<typename _Scalar , int _Dim, int _Mode, int _Options>
Scalar Eigen::Transform< _Scalar, _Dim, _Mode, _Options >::operator() ( Index row,
Index col
) const
inline

shortcut for m_matrix(row,col);

See also
MatrixBase::operator(Index,Index) const

operator*() [1/4]

template<typename _Scalar , int _Dim, int _Mode, int _Options>
template<typename DiagonalDerived >
const TransformTimeDiagonalReturnType Eigen::Transform< _Scalar, _Dim, _Mode, _Options >::operator* ( const DiagonalBase< DiagonalDerived > & b ) const
inline
Returns
The product expression of a transform a times a diagonal matrix b

The rhs diagonal matrix is interpreted as an affine scaling transformation. The product results in a Transform of the same type (mode) as the lhs only if the lhs mode is no isometry. In that case, the returned transform is an affinity.

operator*() [2/4]

template<typename _Scalar , int _Dim, int _Mode, int _Options>
template<typename OtherDerived >
const internal::transform_right_product_impl<Transform, OtherDerived>::ResultType Eigen::Transform< _Scalar, _Dim, _Mode, _Options >::operator* ( const EigenBase< OtherDerived > & other ) const
inline
Returns
an expression of the product between the transform *this and a matrix expression other.

The right-hand-side other can be either:

  • an homogeneous vector of size Dim+1,
  • a set of homogeneous vectors of size Dim+1 x N,
  • a transformation matrix of size Dim+1 x Dim+1.

Moreover, if *this represents an affine transformation (i.e., Mode!=Projective), then other can also be:

  • a point of size Dim (computes:
    this->linear() * other + this->translation()
    ),
  • a set of N points as a Dim x N matrix (computes:
    (this->linear() * other).colwise() + this->translation()
    
    ),

In all cases, the return type is a matrix or vector of same sizes as the right-hand-side other.

If you want to interpret other as a linear or affine transformation, then first convert it to a Transform<> type, or do your own cooking.

Finally, if you want to apply Affine transformations to vectors, then explicitly apply the linear part only:

Affine3f A;
Vector3f v1, v2;
v2 = A.linear() * v1;

operator*() [3/4]

template<typename _Scalar , int _Dim, int _Mode, int _Options>
const Transform Eigen::Transform< _Scalar, _Dim, _Mode, _Options >::operator* ( const Transform< _Scalar, _Dim, _Mode, _Options > & other ) const
inline

Concatenates two transformations

operator*() [4/4]

template<typename _Scalar , int _Dim, int _Mode, int _Options>
template<int OtherMode, int OtherOptions>
internal::transform_transform_product_impl<Transform,Transform<Scalar,Dim,OtherMode,OtherOptions> >::ResultType Eigen::Transform< _Scalar, _Dim, _Mode, _Options >::operator* ( const Transform< Scalar, Dim, OtherMode, OtherOptions > & other ) const
inline

Concatenates two different transformations

operator=() [1/3]

template<typename _Scalar , int _Dim, int _Mode, int _Options>
template<typename OtherDerived >
Transform& Eigen::Transform< _Scalar, _Dim, _Mode, _Options >::operator= ( const EigenBase< OtherDerived > & other )
inline

Set *this from a Dim^2 or (Dim+1)^2 matrix.

operator=() [2/3]

template<typename Scalar , int Dim, int Mode, int Options>
Transform< Scalar, Dim, Mode, Options > & Eigen::Transform< Scalar, Dim, Mode, Options >::operator= ( const QMatrix & other )
inline

Set *this from a QMatrix assuming the dimension is 2.

This function is available only if the token EIGEN_QT_SUPPORT is defined.

operator=() [3/3]

template<typename Scalar , int Dim, int Mode, int Options>
Transform< Scalar, Dim, Mode, Options > & Eigen::Transform< Scalar, Dim, Mode, Options >::operator= ( const QTransform< _Scalar, _Dim, _Mode, _Options > & other )
inline

Set *this from a QTransform assuming the dimension is 2.

This function is available only if the token EIGEN_QT_SUPPORT is defined.

prerotate()

template<typename _Scalar , int _Dim, int _Mode, int _Options>
template<typename RotationType >
Transform<Scalar,Dim,Mode,Options>& Eigen::Transform< _Scalar, _Dim, _Mode, _Options >::prerotate ( const RotationType & rotation )

Applies on the left the rotation represented by the rotation rotation to *this and returns a reference to *this.

See rotate() for further details.

See also
rotate()

prescale() [1/2]

template<typename _Scalar , int _Dim, int _Mode, int _Options>
template<typename OtherDerived >
Transform<Scalar,Dim,Mode,Options>& Eigen::Transform< _Scalar, _Dim, _Mode, _Options >::prescale ( const MatrixBase< OtherDerived > & other )

Applies on the left the non uniform scale transformation represented by the vector other to *this and returns a reference to *this.

See also
scale()

prescale() [2/2]

template<typename Scalar , int Dim, int Mode, int Options>
Transform< Scalar, Dim, Mode, Options > & Eigen::Transform< Scalar, Dim, Mode, Options >::prescale ( const Scalar & s )
inline

Applies on the left a uniform scale of a factor c to *this and returns a reference to *this.

See also
scale(Scalar)

preshear()

template<typename Scalar , int Dim, int Mode, int Options>
Transform< Scalar, Dim, Mode, Options > & Eigen::Transform< Scalar, Dim, Mode, Options >::preshear ( const Scalar & sx,
const Scalar & sy
)

Applies on the left the shear transformation represented by the vector other to *this and returns a reference to *this.

Warning
2D only.
See also
shear()

pretranslate()

template<typename _Scalar , int _Dim, int _Mode, int _Options>
template<typename OtherDerived >
Transform<Scalar,Dim,Mode,Options>& Eigen::Transform< _Scalar, _Dim, _Mode, _Options >::pretranslate ( const MatrixBase< OtherDerived > & other )

Applies on the left the translation matrix represented by the vector other to *this and returns a reference to *this.

See also
translate()

rotate()

template<typename _Scalar , int _Dim, int _Mode, int _Options>
template<typename RotationType >
Transform<Scalar,Dim,Mode,Options>& Eigen::Transform< _Scalar, _Dim, _Mode, _Options >::rotate ( const RotationType & rotation )

Applies on the right the rotation represented by the rotation rotation to *this and returns a reference to *this.

The template parameter RotationType is the type of the rotation which must be known by internal::toRotationMatrix<>.

Natively supported types includes:

This mechanism is easily extendable to support user types such as Euler angles, or a pair of Quaternion for 4D rotations.

See also
rotate(Scalar), class Quaternion, class AngleAxis, prerotate(RotationType)

rotation()

template<typename Scalar , int Dim, int Mode, int Options>
Transform< Scalar, Dim, Mode, Options >::RotationReturnType Eigen::Transform< Scalar, Dim, Mode, Options >::rotation
Returns
the rotation part of the transformation

If Mode==Isometry, then this method is an alias for linear(), otherwise it calls computeRotationScaling() to extract the rotation through a SVD decomposition.

This is defined in the SVD module.

#include <Eigen/SVD> 
See also
computeRotationScaling(), computeScalingRotation(), class SVD

scale() [1/2]

template<typename _Scalar , int _Dim, int _Mode, int _Options>
template<typename OtherDerived >
Transform<Scalar,Dim,Mode,Options>& Eigen::Transform< _Scalar, _Dim, _Mode, _Options >::scale ( const MatrixBase< OtherDerived > & other )

Applies on the right the non uniform scale transformation represented by the vector other to *this and returns a reference to *this.

See also
prescale()

scale() [2/2]

template<typename Scalar , int Dim, int Mode, int Options>
Transform< Scalar, Dim, Mode, Options > & Eigen::Transform< Scalar, Dim, Mode, Options >::scale ( const Scalar & s )
inline

Applies on the right a uniform scale of a factor c to *this and returns a reference to *this.

See also
prescale(Scalar)

setIdentity()

template<typename _Scalar , int _Dim, int _Mode, int _Options>
void Eigen::Transform< _Scalar, _Dim, _Mode, _Options >::setIdentity ( )
inline

shear()

template<typename Scalar , int Dim, int Mode, int Options>
Transform< Scalar, Dim, Mode, Options > & Eigen::Transform< Scalar, Dim, Mode, Options >::shear ( const Scalar & sx,
const Scalar & sy
)

Applies on the right the shear transformation represented by the vector other to *this and returns a reference to *this.

Warning
2D only.
See also
preshear()

toQMatrix()

template<typename Scalar , int Dim, int Mode, int Options>
QMatrix Eigen::Transform< Scalar, Dim, Mode, Options >::toQMatrix ( void ) const
inline
Returns
a QMatrix from *this assuming the dimension is 2.
Warning
this conversion might loss data if *this is not affine

This function is available only if the token EIGEN_QT_SUPPORT is defined.

toQTransform()

template<typename Scalar , int Dim, int Mode, int Options>
QTransform Eigen::Transform< Scalar, Dim, Mode, Options >::toQTransform ( void ) const
inline
Returns
a QTransform from *this assuming the dimension is 2.

This function is available only if the token EIGEN_QT_SUPPORT is defined.

translate()

template<typename _Scalar , int _Dim, int _Mode, int _Options>
template<typename OtherDerived >
Transform<Scalar,Dim,Mode,Options>& Eigen::Transform< _Scalar, _Dim, _Mode, _Options >::translate ( const MatrixBase< OtherDerived > & other )

Applies on the right the translation matrix represented by the vector other to *this and returns a reference to *this.

See also
pretranslate()

translation() [1/2]

template<typename _Scalar , int _Dim, int _Mode, int _Options>
TranslationPart Eigen::Transform< _Scalar, _Dim, _Mode, _Options >::translation ( )
inline
Returns
a writable expression of the translation vector of the transformation

translation() [2/2]

template<typename _Scalar , int _Dim, int _Mode, int _Options>
ConstTranslationPart Eigen::Transform< _Scalar, _Dim, _Mode, _Options >::translation ( ) const
inline
Returns
a read-only expression of the translation vector of the transformation

The documentation for this class was generated from the following file:

© Eigen.
Licensed under the MPL2 License.
https://eigen.tuxfamily.org/dox/classEigen_1_1Transform.html