Represents a 3D rotation as a rotation angle around an arbitrary 3D axis.
This is defined in the Geometry module.
#include <Eigen/Geometry>
_Scalar | the scalar type, i.e., the type of the coefficients. |
The following two typedefs are provided for convenience:
AngleAxisf
for float
AngleAxisd
for double
Combined with MatrixBase::Unit{X,Y,Z}, AngleAxis can be used to easily mimic Euler-angles. Here is an example:
Matrix3f m; m = AngleAxisf(0.25*M_PI, Vector3f::UnitX()) * AngleAxisf(0.5*M_PI, Vector3f::UnitY()) * AngleAxisf(0.33*M_PI, Vector3f::UnitZ()); cout << m << endl << "is unitary: " << m.isUnitary() << endl;
Output:
1.19e-07 0 1 0.969 -0.249 0 0.249 0.969 1.19e-07 is unitary: 1
typedef _Scalar | Scalar |
| |
typedef Matrix< Scalar, Dim, Dim > | RotationMatrixType |
typedef internal::traits< AngleAxis< _Scalar > >::Scalar | Scalar |
Scalar & | angle () |
Scalar | angle () const |
AngleAxis () | |
template<typename OtherScalarType > | |
AngleAxis (const AngleAxis< OtherScalarType > &other) | |
template<typename Derived > | |
AngleAxis (const MatrixBase< Derived > &m) | |
template<typename QuatDerived > | |
AngleAxis (const QuaternionBase< QuatDerived > &q) | |
template<typename Derived > | |
AngleAxis (const Scalar &angle, const MatrixBase< Derived > &axis) | |
Vector3 & | axis () |
const Vector3 & | axis () const |
template<typename NewScalarType > | |
internal::cast_return_type< AngleAxis, AngleAxis< NewScalarType > >::type | cast () const |
template<typename Derived > | |
AngleAxis< Scalar > & | fromRotationMatrix (const MatrixBase< Derived > &mat) |
Sets *this from a 3x3 rotation matrix. |
|
AngleAxis | inverse () const |
bool | isApprox (const AngleAxis &other, const typename NumTraits< Scalar >::Real &prec=NumTraits< Scalar >::dummy_precision()) const |
QuaternionType | operator* (const AngleAxis &other) const |
QuaternionType | operator* (const QuaternionType &other) const |
template<typename Derived > | |
AngleAxis< Scalar > & | operator= (const MatrixBase< Derived > &mat) |
template<typename QuatDerived > | |
AngleAxis< Scalar > & | operator= (const QuaternionBase< QuatDerived > &q) |
Matrix3 | toRotationMatrix (void) const |
| |
AngleAxis< _Scalar > | inverse () const |
RotationMatrixType | matrix () const |
internal::rotation_base_generic_product_selector< AngleAxis< _Scalar >, OtherDerived, OtherDerived::IsVectorAtCompileTime >::ReturnType | operator* (const EigenBase< OtherDerived > &e) const |
Transform< Scalar, Dim, Mode > | operator* (const Transform< Scalar, Dim, Mode, Options > &t) const |
Transform< Scalar, Dim, Isometry > | operator* (const Translation< Scalar, Dim > &t) const |
RotationMatrixType | operator* (const UniformScaling< Scalar > &s) const |
RotationMatrixType | toRotationMatrix () const |
typedef _Scalar Eigen::AngleAxis< _Scalar >::Scalar |
the scalar type of the coefficients
| inline |
Default constructor without initialization.
| inline |
Constructs and initialize the angle-axis rotation from an angle in radian and an axis which must be normalized.
| inlineexplicit |
Constructs and initialize the angle-axis rotation from a quaternion q. This function implicitly normalizes the quaternion q.
| inlineexplicit |
Constructs and initialize the angle-axis rotation from a 3x3 rotation matrix.
| inlineexplicit |
Copy constructor with scalar type conversion
| inline |
| inline |
| inline |
| inline |
| inline |
*this
with scalar type casted to NewScalarType Note that if NewScalarType is equal to the current scalar type of *this
then this function smartly returns a const reference to *this
.
| inline |
| inline |
true
if *this
is approximately equal to other, within the precision determined by prec.
| inline |
Concatenates two rotations
| inline |
Concatenates two rotations
AngleAxis<Scalar>& Eigen::AngleAxis< _Scalar >::operator= | ( | const MatrixBase< Derived > & | mat | ) |
Set *this
from a 3x3 rotation matrix mat.
AngleAxis<Scalar>& Eigen::AngleAxis< _Scalar >::operator= | ( | const QuaternionBase< QuatDerived > & | q | ) |
Set *this
from a unit quaternion.
The resulting axis is normalized, and the computed angle is in the [0,pi] range.
This function implicitly normalizes the quaternion q.
AngleAxis< Scalar >::Matrix3 Eigen::AngleAxis< Scalar >::toRotationMatrix | ( | void | ) | const |
Constructs and
© Eigen.
Licensed under the MPL2 License.
https://eigen.tuxfamily.org/dox/classEigen_1_1AngleAxis.html