This module contains various string utility routines. See the module re for regular expression support. See the module pegs for PEG support. This module is available for the JavaScript target.
SkipTable = array[char, int]
FloatFormatMode = enum ffDefault, ## use the shorter floating point notation ffDecimal, ## use decimal floating point notation ffScientific ## use scientific notation (using ``e`` character)
BinaryPrefixMode = enum bpIEC, bpColloquial
Whitespace = {' ', '\t', '\v', '\c', '\n', '\f'}
Letters = {'A'..'Z', 'a'..'z'}
Digits = {'0'..'9'}
HexDigits = {'0'..'9', 'A'..'F', 'a'..'f'}
IdentChars = {'a'..'z', 'A'..'Z', '0'..'9', '_'}
IdentStartChars = {'a'..'z', 'A'..'Z', '_'}
NewLines = {'\c', '\n'}
AllChars = {'\x00'..'\xFF'}
A set with all the possible characters.
Not very useful by its own, you can use it to create inverted sets to make the find() proc find invalid characters in strings. Example:
let invalid = AllChars - Digits doAssert "01234".find(invalid) == -1 doAssert "01A34".find(invalid) == 2
proc isAlphaAscii(c: char): bool {...}{.noSideEffect, procvar, gcsafe, extern: "nsuIsAlphaAsciiChar", raises: [], tags: [].}
Checks whether or not c is alphabetical.
This checks a-z, A-Z ASCII characters only.
proc isAlphaNumeric(c: char): bool {...}{.noSideEffect, procvar, gcsafe, extern: "nsuIsAlphaNumericChar", raises: [], tags: [].}
Checks whether or not c is alphanumeric.
This checks a-z, A-Z, 0-9 ASCII characters only.
proc isDigit(c: char): bool {...}{.noSideEffect, procvar, gcsafe, extern: "nsuIsDigitChar", raises: [], tags: [].}
Checks whether or not c is a number.
This checks 0-9 ASCII characters only.
proc isSpaceAscii(c: char): bool {...}{.noSideEffect, procvar, gcsafe, extern: "nsuIsSpaceAsciiChar", raises: [], tags: [].}
proc isLowerAscii(c: char): bool {...}{.noSideEffect, procvar, gcsafe, extern: "nsuIsLowerAsciiChar", raises: [], tags: [].}
Checks whether or not c is a lower case character.
This checks ASCII characters only.
proc isUpperAscii(c: char): bool {...}{.noSideEffect, procvar, gcsafe, extern: "nsuIsUpperAsciiChar", raises: [], tags: [].}
Checks whether or not c is an upper case character.
This checks ASCII characters only.
proc isAlphaAscii(s: string): bool {...}{.noSideEffect, procvar, gcsafe, extern: "nsuIsAlphaAsciiStr", raises: [], tags: [].}
Checks whether or not s is alphabetical.
This checks a-z, A-Z ASCII characters only. Returns true if all characters in s are alphabetic and there is at least one character in s.
proc isAlphaNumeric(s: string): bool {...}{.noSideEffect, procvar, gcsafe, extern: "nsuIsAlphaNumericStr", raises: [], tags: [].}
Checks whether or not s is alphanumeric.
This checks a-z, A-Z, 0-9 ASCII characters only. Returns true if all characters in s are alpanumeric and there is at least one character in s.
proc isDigit(s: string): bool {...}{.noSideEffect, procvar, gcsafe, extern: "nsuIsDigitStr", raises: [], tags: [].}
Checks whether or not s is a numeric value.
This checks 0-9 ASCII characters only. Returns true if all characters in s are numeric and there is at least one character in s.
proc isSpaceAscii(s: string): bool {...}{.noSideEffect, procvar, gcsafe, extern: "nsuIsSpaceAsciiStr", raises: [], tags: [].}
Checks whether or not s is completely whitespace.
Returns true if all characters in s are whitespace characters and there is at least one character in s.
proc isLowerAscii(s: string; skipNonAlpha: bool): bool {...}{.raises: [], tags: [].}
Checks whether s
is lower case.
This checks ASCII characters only.
If skipNonAlpha
is true, returns true if all alphabetical characters in s
are lower case. Returns false if none of the characters in s
are alphabetical.
If skipNonAlpha
is false, returns true only if all characters in s
are alphabetical and lower case.
For either value of skipNonAlpha
, returns false if s
is an empty string.
proc isUpperAscii(s: string; skipNonAlpha: bool): bool {...}{.raises: [], tags: [].}
Checks whether s
is upper case.
This checks ASCII characters only.
If skipNonAlpha
is true, returns true if all alphabetical characters in s
are upper case. Returns false if none of the characters in s
are alphabetical.
If skipNonAlpha
is false, returns true only if all characters in s
are alphabetical and upper case.
For either value of skipNonAlpha
, returns false if s
is an empty string.
proc toLowerAscii(c: char): char {...}{.noSideEffect, procvar, gcsafe, extern: "nsuToLowerAsciiChar", raises: [], tags: [].}
Converts c into lower case.
This works only for the letters A-Z
. See unicode.toLower for a version that works for any Unicode character.
proc toLowerAscii(s: string): string {...}{.noSideEffect, procvar, gcsafe, extern: "nsuToLowerAsciiStr", raises: [], tags: [].}
Converts s into lower case.
This works only for the letters A-Z
. See unicode.toLower for a version that works for any Unicode character.
proc toUpperAscii(c: char): char {...}{.noSideEffect, procvar, gcsafe, extern: "nsuToUpperAsciiChar", raises: [], tags: [].}
Converts c into upper case.
This works only for the letters A-Z
. See unicode.toUpper for a version that works for any Unicode character.
proc toUpperAscii(s: string): string {...}{.noSideEffect, procvar, gcsafe, extern: "nsuToUpperAsciiStr", raises: [], tags: [].}
Converts s into upper case.
This works only for the letters A-Z
. See unicode.toUpper for a version that works for any Unicode character.
proc capitalizeAscii(s: string): string {...}{.noSideEffect, procvar, gcsafe, extern: "nsuCapitalizeAscii", raises: [], tags: [].}
Converts the first character of s into upper case.
This works only for the letters A-Z
.
proc normalize(s: string): string {...}{.noSideEffect, procvar, gcsafe, extern: "nsuNormalize", raises: [], tags: [].}
Normalizes the string s.
That means to convert it to lower case and remove any '_'. This should NOT be used to normalize Nim identifier names.
proc cmpIgnoreCase(a, b: string): int {...}{.noSideEffect, gcsafe, extern: "nsuCmpIgnoreCase", procvar, raises: [], tags: [].}
0 iff a == b
< 0 iff a < b
> 0 iff a > b
proc cmpIgnoreStyle(a, b: string): int {...}{.noSideEffect, gcsafe, extern: "nsuCmpIgnoreStyle", procvar, raises: [], tags: [].}
cmp(normalize(a), normalize(b))
. It is just optimized to not allocate temporary strings. This should NOT be used to compare Nim identifier names. use macros.eqIdent for that. Returns:0 iff a == b
< 0 iff a < b
> 0 iff a > b
proc strip(s: string; leading = true; trailing = true; chars: set[char] = Whitespace): string {...}{. noSideEffect, gcsafe, extern: "nsuStrip", raises: [], tags: [].}
Strips leading or trailing chars from s and returns the resulting string.
If leading is true, leading chars are stripped. If trailing is true, trailing chars are stripped. If both are false, the string is returned unchanged.
proc toOctal(c: char): string {...}{.noSideEffect, gcsafe, extern: "nsuToOctal", raises: [], tags: [].}
Converts a character c to its octal representation.
The resulting string may not have a leading zero. Its length is always exactly 3.
proc isNilOrEmpty(s: string): bool {...}{.noSideEffect, procvar, gcsafe, extern: "nsuIsNilOrEmpty", deprecated: "use \'x.len == 0\' instead", raises: [], tags: [].}
proc isNilOrWhitespace(s: string): bool {...}{.noSideEffect, procvar, gcsafe, extern: "nsuIsNilOrWhitespace", raises: [], tags: [].}
proc splitWhitespace(s: string; maxsplit: int = -1): seq[string] {...}{.noSideEffect, gcsafe, extern: "nsuSplitWhitespace", raises: [], tags: [].}
proc splitLines(s: string; keepEol = false): seq[string] {...}{.noSideEffect, gcsafe, extern: "nsuSplitLines", raises: [], tags: [].}
proc countLines(s: string): int {...}{.noSideEffect, gcsafe, extern: "nsuCountLines", raises: [], tags: [].}
Returns the number of lines in the string s.
This is the same as len(splitLines(s))
, but much more efficient because it doesn't modify the string creating temporal objects. Every character literal newline combination (CR, LF, CR-LF) is supported.
In this context, a line is any string seperated by a newline combination. A line can be an empty string.
proc split(s: string; seps: set[char] = Whitespace; maxsplit: int = -1): seq[string] {...}{. noSideEffect, gcsafe, extern: "nsuSplitCharSet", raises: [], tags: [].}
Examples:
doAssert "a,b;c".split({',', ';'}) == @["a", "b", "c"] doAssert "".split({' '}) == @[""]
proc split(s: string; sep: char; maxsplit: int = -1): seq[string] {...}{.noSideEffect, gcsafe, extern: "nsuSplitChar", raises: [], tags: [].}
Examples:
doAssert "a,b,c".split(',') == @["a", "b", "c"] doAssert "".split(' ') == @[""]
proc split(s: string; sep: string; maxsplit: int = -1): seq[string] {...}{.noSideEffect, gcsafe, extern: "nsuSplitString", raises: [], tags: [].}
Splits the string s into substrings using a string separator.
Substrings are separated by the string sep. This is a wrapper around the split iterator.
Examples:
doAssert "a,b,c".split(",") == @["a", "b", "c"] doAssert "a man a plan a canal panama".split("a ") == @["", "man ", "plan ", "canal panama"] doAssert "".split("Elon Musk") == @[""] doAssert "a largely spaced sentence".split(" ") == @["a", "", "largely", "", "", "", "spaced", "sentence"] doAssert "a largely spaced sentence".split(" ", maxsplit = 1) == @["a", " largely spaced sentence"]
proc rsplit(s: string; seps: set[char] = Whitespace; maxsplit: int = -1): seq[string] {...}{. noSideEffect, gcsafe, extern: "nsuRSplitCharSet", raises: [], tags: [].}
The same as the rsplit iterator, but is a proc that returns a sequence of substrings.
A possible common use case for rsplit is path manipulation, particularly on systems that don't use a common delimiter.
For example, if a system had # as a delimiter, you could do the following to get the tail of the path:
var tailSplit = rsplit("Root#Object#Method#Index", {'#'}, maxsplit=1)
Results in tailSplit containing:
@["Root#Object#Method", "Index"]
proc rsplit(s: string; sep: char; maxsplit: int = -1): seq[string] {...}{.noSideEffect, gcsafe, extern: "nsuRSplitChar", raises: [], tags: [].}
The same as the rsplit iterator, but is a proc that returns a sequence of substrings.
A possible common use case for rsplit is path manipulation, particularly on systems that don't use a common delimiter.
For example, if a system had # as a delimiter, you could do the following to get the tail of the path:
var tailSplit = rsplit("Root#Object#Method#Index", '#', maxsplit=1)
Results in tailSplit containing:
@["Root#Object#Method", "Index"]
proc rsplit(s: string; sep: string; maxsplit: int = -1): seq[string] {...}{.noSideEffect, gcsafe, extern: "nsuRSplitString", raises: [], tags: [].}
The same as the rsplit iterator, but is a proc that returns a sequence of substrings.
A possible common use case for rsplit is path manipulation, particularly on systems that don't use a common delimiter.
For example, if a system had # as a delimiter, you could do the following to get the tail of the path:
var tailSplit = rsplit("Root#Object#Method#Index", "#", maxsplit=1)
Results in tailSplit containing:
@["Root#Object#Method", "Index"]
Examples:
doAssert "a largely spaced sentence".rsplit(" ", maxsplit = 1) == @["a largely spaced", "sentence"] doAssert "a,b,c".rsplit(",") == @["a", "b", "c"] doAssert "a man a plan a canal panama".rsplit("a ") == @["", "man ", "plan ", "canal panama"] doAssert "".rsplit("Elon Musk") == @[""] doAssert "a largely spaced sentence".rsplit(" ") == @["a", "", "largely", "", "", "", "spaced", "sentence"]
proc toHex(x: BiggestInt; len: Positive): string {...}{.noSideEffect, gcsafe, extern: "nsuToHex", raises: [], tags: [].}
Converts x to its hexadecimal representation.
The resulting string will be exactly len characters long. No prefix like 0x
is generated. x is treated as an unsigned value.
proc toHex[T: SomeInteger](x: T): string
toHex(x, T.sizeOf * 2)
proc toHex(s: string): string {...}{.noSideEffect, gcsafe, raises: [], tags: [].}
Converts a bytes string to its hexadecimal representation.
The output is twice the input long. No prefix like 0x
is generated.
proc intToStr(x: int; minchars: Positive = 1): string {...}{.noSideEffect, gcsafe, extern: "nsuIntToStr", raises: [], tags: [].}
Converts x to its decimal representation.
The resulting string will be minimally minchars characters long. This is achieved by adding leading zeros.
proc parseInt(s: string): int {...}{.noSideEffect, procvar, gcsafe, extern: "nsuParseInt", raises: [OverflowError, ValueError], tags: [].}
Parses a decimal integer value contained in s.
If s is not a valid integer, ValueError is raised.
proc parseBiggestInt(s: string): BiggestInt {...}{.noSideEffect, procvar, gcsafe, extern: "nsuParseBiggestInt", raises: [ValueError], tags: [].}
Parses a decimal integer value contained in s.
If s is not a valid integer, ValueError is raised.
proc parseUInt(s: string): uint {...}{.noSideEffect, procvar, gcsafe, extern: "nsuParseUInt", raises: [ValueError], tags: [].}
Parses a decimal unsigned integer value contained in s.
If s is not a valid integer, ValueError is raised.
proc parseBiggestUInt(s: string): BiggestUInt {...}{.noSideEffect, procvar, gcsafe, extern: "nsuParseBiggestUInt", raises: [ValueError], tags: [].}
Parses a decimal unsigned integer value contained in s.
If s is not a valid integer, ValueError is raised.
proc parseFloat(s: string): float {...}{.noSideEffect, procvar, gcsafe, extern: "nsuParseFloat", raises: [ValueError], tags: [].}
NAN
, INF
, -INF
are also supported (case insensitive comparison). proc parseBinInt(s: string): int {...}{.noSideEffect, procvar, gcsafe, extern: "nsuParseBinInt", raises: [ValueError], tags: [].}
Parses a binary integer value contained in s.
If s is not a valid binary integer, ValueError is raised. s can have one of the following optional prefixes: 0b
, 0B
. Underscores within s are ignored.
proc parseOctInt(s: string): int {...}{.noSideEffect, gcsafe, extern: "nsuParseOctInt", raises: [ValueError], tags: [].}
Parses an octal integer value contained in s.
If s is not a valid oct integer, ValueError is raised. s can have one of the following optional prefixes: 0o
, 0O
. Underscores within s are ignored.
proc parseHexInt(s: string): int {...}{.noSideEffect, procvar, gcsafe, extern: "nsuParseHexInt", raises: [ValueError], tags: [].}
Parses a hexadecimal integer value contained in s.
If s is not a valid hex integer, ValueError is raised. s can have one of the following optional prefixes: 0x
, 0X
, #
. Underscores within s are ignored.
proc parseHexStr(s: string): string {...}{.noSideEffect, procvar, gcsafe, extern: "nsuParseHexStr", raises: [ValueError], tags: [].}
hexToStr("00ff") == "\0\255"
Raises ValueError
for an invalid hex values. The comparison is case-insensitive.
proc parseBool(s: string): bool {...}{.raises: [ValueError], tags: [].}
Parses a value into a bool.
If s
is one of the following values: y, yes, true, 1, on
, then returns true. If s
is one of the following values: n, no, false, 0, off
, then returns false. If s
is something else a ValueError
exception is raised.
proc parseEnum[T: enum](s: string): T
Parses an enum T
.
Raises ValueError
for an invalid value in s. The comparison is done in a style insensitive way.
proc parseEnum[T: enum](s: string; default: T): T
Parses an enum T
.
Uses default for an invalid value in s. The comparison is done in a style insensitive way.
proc repeat(c: char; count: Natural): string {...}{.noSideEffect, gcsafe, extern: "nsuRepeatChar", raises: [], tags: [].}
proc tabexpand(indent: int, text: string, tabsize: int = 4) = echo '\t'.repeat(indent div tabsize), ' '.repeat(indent mod tabsize), text tabexpand(4, "At four") tabexpand(5, "At five") tabexpand(6, "At six")
proc repeat(s: string; n: Natural): string {...}{.noSideEffect, gcsafe, extern: "nsuRepeatStr", raises: [], tags: [].}
echo "+++ STOP ".repeat(4), "+++"
proc align(s: string; count: Natural; padding = ' '): string {...}{.noSideEffect, gcsafe, extern: "nsuAlignString", raises: [], tags: [].}
Aligns a string s with padding, so that it is of length count.
padding characters (by default spaces) are added before s resulting in right alignment. If s.len >= count
, no spaces are added and s is returned unchanged. If you need to left align a string use the alignLeft proc. Example:
assert align("abc", 4) == " abc" assert align("a", 0) == "a" assert align("1232", 6) == " 1232" assert align("1232", 6, '#') == "##1232"
proc alignLeft(s: string; count: Natural; padding = ' '): string {...}{.noSideEffect, raises: [], tags: [].}
Left-Aligns a string s with padding, so that it is of length count.
padding characters (by default spaces) are added after s resulting in left alignment. If s.len >= count
, no spaces are added and s is returned unchanged. If you need to right align a string use the align proc. Example:
assert alignLeft("abc", 4) == "abc " assert alignLeft("a", 0) == "a" assert alignLeft("1232", 6) == "1232 " assert alignLeft("1232", 6, '#') == "1232##"
proc wordWrap(s: string; maxLineWidth = 80; splitLongWords = true; seps: set[char] = Whitespace; newLine = "\n"): string {...}{.noSideEffect, gcsafe, extern: "nsuWordWrap", raises: [], tags: [].}
proc indent(s: string; count: Natural; padding: string = " "): string {...}{.noSideEffect, gcsafe, extern: "nsuIndent", raises: [], tags: [].}
Indents each line in s
by count
amount of padding
.
Note: This does not preserve the new line characters used in s
.
proc unindent(s: string; count: Natural; padding: string = " "): string {...}{.noSideEffect, gcsafe, extern: "nsuUnindent", raises: [], tags: [].}
Unindents each line in s
by count
amount of padding
.
Note: This does not preserve the new line characters used in s
.
proc unindent(s: string): string {...}{.noSideEffect, gcsafe, extern: "nsuUnindentAll", raises: [], tags: [].}
Removes all indentation composed of whitespace from each line in s
.
For example:
const x = """ Hello There """.unindent() doAssert x == "Hello\nThere\n"
proc startsWith(s, prefix: string): bool {...}{.noSideEffect, gcsafe, extern: "nsuStartsWith", raises: [], tags: [].}
Returns true iff s
starts with prefix
.
If prefix == ""
true is returned.
proc startsWith(s: string; prefix: char): bool {...}{.noSideEffect, inline, raises: [], tags: [].}
s
starts with prefix
. proc endsWith(s, suffix: string): bool {...}{.noSideEffect, gcsafe, extern: "nsuEndsWith", raises: [], tags: [].}
Returns true iff s
ends with suffix
.
If suffix == ""
true is returned.
proc endsWith(s: string; suffix: char): bool {...}{.noSideEffect, inline, raises: [], tags: [].}
s
ends with suffix
. proc continuesWith(s, substr: string; start: Natural): bool {...}{.noSideEffect, gcsafe, extern: "nsuContinuesWith", raises: [], tags: [].}
Returns true iff s
continues with substr
at position start
.
If substr == ""
true is returned.
proc addSep(dest: var string; sep = ", "; startLen: Natural = 0) {...}{.noSideEffect, inline, raises: [], tags: [].}
Adds a separator to dest only if its length is bigger than startLen.
A shorthand for:
if dest.len > startLen: add(dest, sep)
This is often useful for generating some code where the items need to be separated by sep. sep is only added if dest is longer than startLen. The following example creates a string describing an array of integers.
Examples:
var arr = "[" for x in items([2, 3, 5, 7, 11]): addSep(arr, startLen = len("[")) add(arr, $x) add(arr, "]")
proc allCharsInSet(s: string; theSet: set[char]): bool {...}{.raises: [], tags: [].}
proc abbrev(s: string; possibilities: openArray[string]): int {...}{.raises: [], tags: [].}
Returns the index of the first item in possibilities if not ambiguous.
Returns -1 if no item has been found and -2 if multiple items match.
proc join(a: openArray[string]; sep: string = ""): string {...}{.noSideEffect, gcsafe, extern: "nsuJoinSep", raises: [], tags: [].}
proc join[T: not string](a: openArray[T]; sep: string = ""): string {...}{.noSideEffect, gcsafe.}
proc initSkipTable(a: var SkipTable; sub: string) {...}{.noSideEffect, gcsafe, extern: "nsuInitSkipTable", raises: [], tags: [].}
proc find(a: SkipTable; s, sub: string; start: Natural = 0; last = 0): int {...}{.noSideEffect, gcsafe, extern: "nsuFindStrA", raises: [], tags: [].}
Searches for sub in s inside range start..`last` using preprocessed table a. If last is unspecified, it defaults to s.high.
Searching is case-sensitive. If sub is not in s, -1 is returned.
proc find(s: string; sub: char; start: Natural = 0; last = 0): int {...}{.noSideEffect, gcsafe, extern: "nsuFindChar", raises: [], tags: [].}
Searches for sub in s inside range start..`last`. If last is unspecified, it defaults to s.high.
Searching is case-sensitive. If sub is not in s, -1 is returned.
proc find(s, sub: string; start: Natural = 0; last = 0): int {...}{.noSideEffect, gcsafe, extern: "nsuFindStr", raises: [], tags: [].}
Searches for sub in s inside range start..`last`. If last is unspecified, it defaults to s.high.
Searching is case-sensitive. If sub is not in s, -1 is returned.
proc find(s: string; chars: set[char]; start: Natural = 0; last = 0): int {...}{.noSideEffect, gcsafe, extern: "nsuFindCharSet", raises: [], tags: [].}
Searches for chars in s inside range start..`last`. If last is unspecified, it defaults to s.high.
If s contains none of the characters in chars, -1 is returned.
proc rfind(s, sub: string; start: int = -1): int {...}{.noSideEffect, raises: [], tags: [].}
Searches for sub in s in reverse, starting at start and going backwards to 0.
Searching is case-sensitive. If sub is not in s, -1 is returned.
proc rfind(s: string; sub: char; start: int = -1): int {...}{.noSideEffect, gcsafe, raises: [], tags: [].}
Searches for sub in s in reverse starting at position start.
Searching is case-sensitive. If sub is not in s, -1 is returned.
proc rfind(s: string; chars: set[char]; start: int = -1): int {...}{.noSideEffect, raises: [], tags: [].}
Searches for chars in s in reverse starting at position start.
Searching is case-sensitive. If sub is not in s, -1 is returned.
proc center(s: string; width: int; fillChar: char = ' '): string {...}{.noSideEffect, gcsafe, extern: "nsuCenterString", raises: [], tags: [].}
Return the contents of s centered in a string width long using fillChar as padding.
The original string is returned if width is less than or equal to s.len.
proc count(s: string; sub: string; overlapping: bool = false): int {...}{.noSideEffect, gcsafe, extern: "nsuCountString", raises: [], tags: [].}
proc count(s: string; sub: char): int {...}{.noSideEffect, gcsafe, extern: "nsuCountChar", raises: [], tags: [].}
proc count(s: string; subs: set[char]): int {...}{.noSideEffect, gcsafe, extern: "nsuCountCharSet", raises: [], tags: [].}
proc quoteIfContainsWhite(s: string): string {...}{.deprecated, raises: [], tags: [].}
Returns '"' & s & '"'
if s contains a space and does not start with a quote, else returns s.
DEPRECATED as it was confused for shell quoting function. For this application use osproc.quoteShell.
proc contains(s: string; c: char): bool {...}{.noSideEffect, raises: [], tags: [].}
find(s, c) >= 0
. proc contains(s, sub: string): bool {...}{.noSideEffect, raises: [], tags: [].}
find(s, sub) >= 0
. proc contains(s: string; chars: set[char]): bool {...}{.noSideEffect, raises: [], tags: [].}
find(s, chars) >= 0
. proc replace(s, sub: string; by = ""): string {...}{.noSideEffect, gcsafe, extern: "nsuReplaceStr", raises: [], tags: [].}
proc replace(s: string; sub, by: char): string {...}{.noSideEffect, gcsafe, extern: "nsuReplaceChar", raises: [], tags: [].}
Replaces sub in s by the character by.
Optimized version of replace for characters.
proc replaceWord(s, sub: string; by = ""): string {...}{.noSideEffect, gcsafe, extern: "nsuReplaceWord", raises: [], tags: [].}
Replaces sub in s by the string by.
Each occurrence of sub has to be surrounded by word boundaries (comparable to \\w
in regular expressions), otherwise it is not replaced.
proc multiReplace(s: string; replacements: varargs[(string, string)]): string {...}{. noSideEffect, raises: [], tags: [].}
Same as replace, but specialized for doing multiple replacements in a single pass through the input string.
multiReplace performs all replacements in a single pass, this means it can be used to swap the occurences of "a" and "b", for instance.
If the resulting string is not longer than the original input string, only a single memory allocation is required.
The order of the replacements does matter. Earlier replacements are preferred over later replacements in the argument list.
proc delete(s: var string; first, last: int) {...}{.noSideEffect, gcsafe, extern: "nsuDelete", raises: [], tags: [].}
Deletes in s the characters at position first .. last.
This modifies s itself, it does not return a copy.
proc toOct(x: BiggestInt; len: Positive): string {...}{.noSideEffect, gcsafe, extern: "nsuToOct", raises: [], tags: [].}
Converts x into its octal representation.
The resulting string is always len characters long. No leading 0o
prefix is generated.
proc toBin(x: BiggestInt; len: Positive): string {...}{.noSideEffect, gcsafe, extern: "nsuToBin", raises: [], tags: [].}
Converts x into its binary representation.
The resulting string is always len characters long. No leading 0b
prefix is generated.
proc insertSep(s: string; sep = '_'; digits = 3): string {...}{.noSideEffect, gcsafe, extern: "nsuInsertSep", raises: [], tags: [].}
Inserts the separator sep after digits digits from right to left.
Even though the algorithm works with any string s, it is only useful if s contains a number.
Examples:
doAssert insertSep("1000000") == "1_000_000"
proc escape(s: string; prefix = "\""; suffix = "\""): string {...}{.noSideEffect, gcsafe, extern: "nsuEscape", raises: [], tags: [].}
Escapes a string s. See system.addEscapedChar for the escaping scheme.
The resulting string is prefixed with prefix and suffixed with suffix. Both may be empty strings.
proc unescape(s: string; prefix = "\""; suffix = "\""): string {...}{.noSideEffect, gcsafe, extern: "nsuUnescape", raises: [ValueError], tags: [].}
Unescapes a string s.
This complements escape as it performs the opposite operations.
If s does not begin with prefix
and end with suffix
a ValueError exception will be raised.
proc validIdentifier(s: string): bool {...}{.noSideEffect, gcsafe, extern: "nsuValidIdentifier", raises: [], tags: [].}
Returns true if s is a valid identifier.
A valid identifier starts with a character of the set IdentStartChars and is followed by any number of characters of the set IdentChars.
Examples:
doAssert "abc_def08".validIdentifier
proc editDistance(a, b: string): int {...}{.noSideEffect, gcsafe, extern: "nsuEditDistance", raises: [], tags: [].}
Returns the edit distance between a and b.
This uses the Levenshtein distance algorithm with only a linear memory overhead.
proc formatBiggestFloat(f: BiggestFloat; format: FloatFormatMode = ffDefault; precision: range[-1 .. 32] = 16; decimalSep = '.'): string {...}{. noSideEffect, gcsafe, extern: "nsu$1", raises: [], tags: [].}
Converts a floating point value f to a string.
If format == ffDecimal
then precision is the number of digits to be printed after the decimal point. If format == ffScientific
then precision is the maximum number of significant digits to be printed. precision's default value is the maximum number of meaningful digits after the decimal point for Nim's biggestFloat
type.
If precision == -1
, it tries to format it nicely.
proc formatFloat(f: float; format: FloatFormatMode = ffDefault; precision: range[-1 .. 32] = 16; decimalSep = '.'): string {...}{.noSideEffect, gcsafe, extern: "nsu$1", raises: [], tags: [].}
Converts a floating point value f to a string.
If format == ffDecimal
then precision is the number of digits to be printed after the decimal point. If format == ffScientific
then precision is the maximum number of significant digits to be printed. precision's default value is the maximum number of meaningful digits after the decimal point for Nim's float
type.
If precision == -1
, it tries to format it nicely.
Examples:
let x = 123.456 doAssert x.formatFloat() == "123.4560000000000" doAssert x.formatFloat(ffDecimal, 4) == "123.4560" doAssert x.formatFloat(ffScientific, 2) == "1.23e+02"
proc trimZeros(x: var string) {...}{.noSideEffect, raises: [], tags: [].}
proc formatSize(bytes: int64; decimalSep = '.'; prefix = bpIEC; includeSpace = false): string {...}{. noSideEffect, raises: [], tags: [].}
Rounds and formats bytes.
By default, uses the IEC/ISO standard binary prefixes, so 1024 will be formatted as 1KiB. Set prefix to bpColloquial to use the colloquial names from the SI standard (e.g. k for 1000 being reused as 1024).
includeSpace can be set to true to include the (SI preferred) space between the number and the unit (e.g. 1 KiB).
Examples:
doAssert formatSize((1'i64 shl 31) + (300'i64 shl 20)) == "2.293GiB" doAssert formatSize((2.234 * 1024 * 1024).int) == "2.234MiB" doAssert formatSize(4096, includeSpace = true) == "4 KiB" doAssert formatSize(4096, prefix = bpColloquial, includeSpace = true) == "4 kB" doAssert formatSize(4096) == "4KiB" doAssert formatSize(5378934, prefix = bpColloquial, decimalSep = ',') == "5,13MB"
proc formatEng(f: BiggestFloat; precision: range[0 .. 32] = 10; trim: bool = true; siPrefix: bool = false; unit: string = ""; decimalSep = '.'; useUnitSpace = false): string {...}{.noSideEffect, raises: [], tags: [].}
Converts a floating point value f to a string using engineering notation.
Numbers in of the range -1000.0<f<1000.0 will be formatted without an exponent. Numbers outside of this range will be formatted as a significand in the range -1000.0<f<1000.0 and an exponent that will always be an integer multiple of 3, corresponding with the SI prefix scale k, M, G, T etc for numbers with an absolute value greater than 1 and m, μ, n, p etc for numbers with an absolute value less than 1.
The default configuration (trim=true and precision=10) shows the shortest form that precisely (up to a maximum of 10 decimal places) displays the value. For example, 4.100000 will be displayed as 4.1 (which is mathematically identical) whereas 4.1000003 will be displayed as 4.1000003.
If trim is set to true, trailing zeros will be removed; if false, the number of digits specified by precision will always be shown.
precision can be used to set the number of digits to be shown after the decimal point or (if trim is true) the maximum number of digits to be shown.
formatEng(0, 2, trim=false) == "0.00" formatEng(0, 2) == "0" formatEng(0.053, 0) == "53e-3" formatEng(52731234, 2) == "52.73e6" formatEng(-52731234, 2) == "-52.73e6"
If siPrefix is set to true, the number will be displayed with the SI prefix corresponding to the exponent. For example 4100 will be displayed as "4.1 k" instead of "4.1e3". Note that u is used for micro- in place of the greek letter mu (μ) as per ISO 2955. Numbers with an absolute value outside of the range 1e-18<f<1000e18 (1a<f<1000E) will be displayed with an exponent rather than an SI prefix, regardless of whether siPrefix is true.
If useUnitSpace is true, the provided unit will be appended to the string (with a space as required by the SI standard). This behaviour is slightly different to appending the unit to the result as the location of the space is altered depending on whether there is an exponent.
formatEng(4100, siPrefix=true, unit="V") == "4.1 kV" formatEng(4.1, siPrefix=true, unit="V") == "4.1 V" formatEng(4.1, siPrefix=true) == "4.1" # Note lack of space formatEng(4100, siPrefix=true) == "4.1 k" formatEng(4.1, siPrefix=true, unit="") == "4.1 " # Space with unit="" formatEng(4100, siPrefix=true, unit="") == "4.1 k" formatEng(4100) == "4.1e3" formatEng(4100, unit="V") == "4.1e3 V" formatEng(4100, unit="", useUnitSpace=true) == "4.1e3 " # Space with useUnitSpace=true
decimalSep is used as the decimal separator.
proc addf(s: var string; formatstr: string; a: varargs[string, `$`]) {...}{.noSideEffect, gcsafe, extern: "nsuAddf", raises: [ValueError], tags: [].}
add(s, formatstr % a)
, but more efficient. proc `%`(formatstr: string; a: openArray[string]): string {...}{.noSideEffect, gcsafe, extern: "nsuFormatOpenArray", raises: [ValueError], tags: [].}
Interpolates a format string with the values from a.
The substitution operator performs string substitutions in formatstr and returns a modified formatstr. This is often called string interpolation.
This is best explained by an example:
"$1 eats $2." % ["The cat", "fish"]
Results in:
"The cat eats fish."
The substitution variables (the thing after the $
) are enumerated from 1 to a.len
. To produce a verbatim $
, use $$
. The notation $#
can be used to refer to the next substitution variable:
"$# eats $#." % ["The cat", "fish"]
Substitution variables can also be words (that is [A-Za-z_]+[A-Za-z0-9_]*
) in which case the arguments in a with even indices are keys and with odd indices are the corresponding values. An example:
"$animal eats $food." % ["animal", "The cat", "food", "fish"]
Results in:
"The cat eats fish."
The variables are compared with cmpIgnoreStyle. ValueError is raised if an ill-formed format string has been passed to the % operator.
proc `%`(formatstr, a: string): string {...}{.noSideEffect, gcsafe, extern: "nsuFormatSingleElem", raises: [ValueError], tags: [].}
formatstr % [a]
. proc format(formatstr: string; a: varargs[string, `$`]): string {...}{.noSideEffect, gcsafe, extern: "nsuFormatVarargs", raises: [ValueError], tags: [].}
formatstr % a
except that it supports auto stringification. proc removeSuffix(s: var string; chars: set[char] = Newlines) {...}{.gcsafe, extern: "nsuRemoveSuffixCharSet", raises: [], tags: [].}
Examples:
var userInput = "Hello World!*~\c\n" userInput.removeSuffix doAssert userInput == "Hello World!*~" userInput.removeSuffix({'~', '*'}) doAssert userInput == "Hello World!" var otherInput = "Hello!?!" otherInput.removeSuffix({'!', '?'}) doAssert otherInput == "Hello"
proc removeSuffix(s: var string; c: char) {...}{.gcsafe, extern: "nsuRemoveSuffixChar", raises: [], tags: [].}
Examples:
var table = "users" table.removeSuffix('s') doAssert table == "user" var dots = "Trailing dots......." dots.removeSuffix('.') doAssert dots == "Trailing dots"
proc removeSuffix(s: var string; suffix: string) {...}{.gcsafe, extern: "nsuRemoveSuffixString", raises: [], tags: [].}
Examples:
var answers = "yeses" answers.removeSuffix("es") doAssert answers == "yes"
proc removePrefix(s: var string; chars: set[char] = Newlines) {...}{.gcsafe, extern: "nsuRemovePrefixCharSet", raises: [], tags: [].}
Examples:
var userInput = "\c\n*~Hello World!" userInput.removePrefix doAssert userInput == "*~Hello World!" userInput.removePrefix({'~', '*'}) doAssert userInput == "Hello World!" var otherInput = "?!?Hello!?!" otherInput.removePrefix({'!', '?'}) doAssert otherInput == "Hello!?!"
proc removePrefix(s: var string; c: char) {...}{.gcsafe, extern: "nsuRemovePrefixChar", raises: [], tags: [].}
Examples:
var ident = "pControl" ident.removePrefix('p') doAssert ident == "Control"
proc removePrefix(s: var string; prefix: string) {...}{.gcsafe, extern: "nsuRemovePrefixString", raises: [], tags: [].}
Examples:
var answers = "yesyes" answers.removePrefix("yes") doAssert answers == "yes"
iterator split(s: string; seps: set[char] = Whitespace; maxsplit: int = -1): string {...}{. raises: [], tags: [].}
Splits the string s into substrings using a group of separators.
Substrings are separated by a substring containing only seps.
for word in split("this\lis an\texample"): writeLine(stdout, word)
...generates this output:
"this" "is" "an" "example"
And the following code:
for word in split("this:is;an$example", {';', ':', '$'}): writeLine(stdout, word)
...produces the same output as the first example. The code:
let date = "2012-11-20T22:08:08.398990" let separators = {' ', '-', ':', 'T'} for number in split(date, separators): writeLine(stdout, number)
...results in:
"2012" "11" "20" "22" "08" "08.398990"
iterator splitWhitespace(s: string; maxsplit: int = -1): string {...}{.raises: [], tags: [].}
Splits the string s
at whitespace stripping leading and trailing whitespace if necessary. If maxsplit
is specified and is positive, no more than maxsplit
splits is made.
The following code:
let s = " foo \t bar baz " for ms in [-1, 1, 2, 3]: echo "------ maxsplit = ", ms, ":" for item in s.splitWhitespace(maxsplit=ms): echo '"', item, '"'
...results in:
------ maxsplit = -1: "foo" "bar" "baz" ------ maxsplit = 1: "foo" "bar baz " ------ maxsplit = 2: "foo" "bar" "baz " ------ maxsplit = 3: "foo" "bar" "baz"
iterator split(s: string; sep: char; maxsplit: int = -1): string {...}{.raises: [], tags: [].}
Splits the string s into substrings using a single separator.
Substrings are separated by the character sep. The code:
for word in split(";;this;is;an;;example;;;", ';'): writeLine(stdout, word)
Results in:
"" "" "this" "is" "an" "" "example" "" "" ""
iterator split(s: string; sep: string; maxsplit: int = -1): string {...}{.raises: [], tags: [].}
Splits the string s into substrings using a string separator.
Substrings are separated by the string sep. The code:
for word in split("thisDATAisDATAcorrupted", "DATA"): writeLine(stdout, word)
Results in:
"this" "is" "corrupted"
iterator rsplit(s: string; seps: set[char] = Whitespace; maxsplit: int = -1): string {...}{. raises: [], tags: [].}
for piece in "foo bar".rsplit(WhiteSpace): echo piece
Results in:
"bar" "foo"
Substrings are separated from the right by the set of chars seps
iterator rsplit(s: string; sep: char; maxsplit: int = -1): string {...}{.raises: [], tags: [].}
for piece in "foo:bar".rsplit(':'): echo piece
Results in:
"bar" "foo"
Substrings are separated from the right by the char sep
iterator rsplit(s: string; sep: string; maxsplit: int = -1; keepSeparators: bool = false): string {...}{. raises: [], tags: [].}
for piece in "foothebar".rsplit("the"): echo piece
Results in:
"bar" "foo"
Substrings are separated from the right by the string sep
iterator splitLines(s: string; keepEol = false): string {...}{.raises: [], tags: [].}
Splits the string s into its containing lines.
Every character literal newline combination (CR, LF, CR-LF) is supported. The result strings contain no trailing end of line characters unless parameter keepEol
is set to true
.
Example:
for line in splitLines("\nthis\nis\nan\n\nexample\n"): writeLine(stdout, line)
Results in:
"" "this" "is" "an" "" "example" ""
iterator tokenize(s: string; seps: set[char] = Whitespace): tuple[token: string, isSep: bool] {...}{.raises: [], tags: [].}
Tokenizes the string s into substrings.
Substrings are separated by a substring containing only seps. Examples:
for word in tokenize(" this is an example "): writeLine(stdout, word)
Results in:
(" ", true) ("this", false) (" ", true) ("is", false) (" ", true) ("an", false) (" ", true) ("example", false) (" ", true)
template spaces(n: Natural): string
let width = 15 text1 = "Hello user!" text2 = "This is a very long string" echo text1 & spaces(max(0, width - text1.len)) & "|" echo text2 & spaces(max(0, width - text2.len)) & "|"
© 2006–2018 Andreas Rumpf
Licensed under the MIT License.
https://nim-lang.org/docs/strutils.html