Source Code: lib/crypto.js
The node:crypto
module provides cryptographic functionality that includes a set of wrappers for OpenSSL's hash, HMAC, cipher, decipher, sign, and verify functions.
MJS modules
const { createHmac } = await import('node:crypto'); const secret = 'abcdefg'; const hash = createHmac('sha256', secret) .update('I love cupcakes') .digest('hex'); console.log(hash); // Prints: // c0fa1bc00531bd78ef38c628449c5102aeabd49b5dc3a2a516ea6ea959d6658e
CJS modules
const { createHmac } = require('node:crypto'); const secret = 'abcdefg'; const hash = createHmac('sha256', secret) .update('I love cupcakes') .digest('hex'); console.log(hash); // Prints: // c0fa1bc00531bd78ef38c628449c5102aeabd49b5dc3a2a516ea6ea959d6658e
It is possible for Node.js to be built without including support for the node:crypto
module. In such cases, attempting to import
from crypto
or calling require('node:crypto')
will result in an error being thrown.
When using CommonJS, the error thrown can be caught using try/catch:
let crypto; try { crypto = require('node:crypto'); } catch (err) { console.error('crypto support is disabled!'); } copy
When using the lexical ESM import
keyword, the error can only be caught if a handler for process.on('uncaughtException')
is registered before any attempt to load the module is made (using, for instance, a preload module).
When using ESM, if there is a chance that the code may be run on a build of Node.js where crypto support is not enabled, consider using the import()
function instead of the lexical import
keyword:
let crypto; try { crypto = await import('node:crypto'); } catch (err) { console.error('crypto support is disabled!'); } copy
Certificate
SPKAC is a Certificate Signing Request mechanism originally implemented by Netscape and was specified formally as part of HTML5's keygen
element.
<keygen>
is deprecated since HTML 5.2 and new projects should not use this element anymore.
The node:crypto
module provides the Certificate
class for working with SPKAC data. The most common usage is handling output generated by the HTML5 <keygen>
element. Node.js uses OpenSSL's SPKAC implementation internally.
Certificate.exportChallenge(spkac[, encoding])
spkac
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>
encoding
<string> The encoding of the spkac
string.spkac
data structure, which includes a public key and a challenge.MJS modules
const { Certificate } = await import('node:crypto'); const spkac = getSpkacSomehow(); const challenge = Certificate.exportChallenge(spkac); console.log(challenge.toString('utf8')); // Prints: the challenge as a UTF8 string
CJS modules
const { Certificate } = require('node:crypto'); const spkac = getSpkacSomehow(); const challenge = Certificate.exportChallenge(spkac); console.log(challenge.toString('utf8')); // Prints: the challenge as a UTF8 string
Certificate.exportPublicKey(spkac[, encoding])
spkac
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>
encoding
<string> The encoding of the spkac
string.spkac
data structure, which includes a public key and a challenge.MJS modules
const { Certificate } = await import('node:crypto'); const spkac = getSpkacSomehow(); const publicKey = Certificate.exportPublicKey(spkac); console.log(publicKey); // Prints: the public key as <Buffer ...>
CJS modules
const { Certificate } = require('node:crypto'); const spkac = getSpkacSomehow(); const publicKey = Certificate.exportPublicKey(spkac); console.log(publicKey); // Prints: the public key as <Buffer ...>
Certificate.verifySpkac(spkac[, encoding])
spkac
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>
encoding
<string> The encoding of the spkac
string.true
if the given spkac
data structure is valid, false
otherwise.MJS modules
import { Buffer } from 'node:buffer'; const { Certificate } = await import('node:crypto'); const spkac = getSpkacSomehow(); console.log(Certificate.verifySpkac(Buffer.from(spkac))); // Prints: true or false
CJS modules
const { Buffer } = require('node:buffer'); const { Certificate } = require('node:crypto'); const spkac = getSpkacSomehow(); console.log(Certificate.verifySpkac(Buffer.from(spkac))); // Prints: true or false
As a legacy interface, it is possible to create new instances of the crypto.Certificate
class as illustrated in the examples below.
new crypto.Certificate()
Instances of the Certificate
class can be created using the new
keyword or by calling crypto.Certificate()
as a function:
MJS modules
const { Certificate } = await import('node:crypto'); const cert1 = new Certificate(); const cert2 = Certificate();
CJS modules
const { Certificate } = require('node:crypto'); const cert1 = new Certificate(); const cert2 = Certificate();
certificate.exportChallenge(spkac[, encoding])
spkac
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>
encoding
<string> The encoding of the spkac
string.spkac
data structure, which includes a public key and a challenge.MJS modules
const { Certificate } = await import('node:crypto'); const cert = Certificate(); const spkac = getSpkacSomehow(); const challenge = cert.exportChallenge(spkac); console.log(challenge.toString('utf8')); // Prints: the challenge as a UTF8 string
CJS modules
const { Certificate } = require('node:crypto'); const cert = Certificate(); const spkac = getSpkacSomehow(); const challenge = cert.exportChallenge(spkac); console.log(challenge.toString('utf8')); // Prints: the challenge as a UTF8 string
certificate.exportPublicKey(spkac[, encoding])
spkac
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>
encoding
<string> The encoding of the spkac
string.spkac
data structure, which includes a public key and a challenge.MJS modules
const { Certificate } = await import('node:crypto'); const cert = Certificate(); const spkac = getSpkacSomehow(); const publicKey = cert.exportPublicKey(spkac); console.log(publicKey); // Prints: the public key as <Buffer ...>
CJS modules
const { Certificate } = require('node:crypto'); const cert = Certificate(); const spkac = getSpkacSomehow(); const publicKey = cert.exportPublicKey(spkac); console.log(publicKey); // Prints: the public key as <Buffer ...>
certificate.verifySpkac(spkac[, encoding])
spkac
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>
encoding
<string> The encoding of the spkac
string.true
if the given spkac
data structure is valid, false
otherwise.MJS modules
import { Buffer } from 'node:buffer'; const { Certificate } = await import('node:crypto'); const cert = Certificate(); const spkac = getSpkacSomehow(); console.log(cert.verifySpkac(Buffer.from(spkac))); // Prints: true or false
CJS modules
const { Buffer } = require('node:buffer'); const { Certificate } = require('node:crypto'); const cert = Certificate(); const spkac = getSpkacSomehow(); console.log(cert.verifySpkac(Buffer.from(spkac))); // Prints: true or false
Cipher
Instances of the Cipher
class are used to encrypt data. The class can be used in one of two ways:
cipher.update()
and cipher.final()
methods to produce the encrypted data.The crypto.createCipher()
or crypto.createCipheriv()
methods are used to create Cipher
instances. Cipher
objects are not to be created directly using the new
keyword.
Example: Using Cipher
objects as streams:
MJS modules
const { scrypt, randomFill, createCipheriv, } = await import('node:crypto'); const algorithm = 'aes-192-cbc'; const password = 'Password used to generate key'; // First, we'll generate the key. The key length is dependent on the algorithm. // In this case for aes192, it is 24 bytes (192 bits). scrypt(password, 'salt', 24, (err, key) => { if (err) throw err; // Then, we'll generate a random initialization vector randomFill(new Uint8Array(16), (err, iv) => { if (err) throw err; // Once we have the key and iv, we can create and use the cipher... const cipher = createCipheriv(algorithm, key, iv); let encrypted = ''; cipher.setEncoding('hex'); cipher.on('data', (chunk) => encrypted += chunk); cipher.on('end', () => console.log(encrypted)); cipher.write('some clear text data'); cipher.end(); }); });
CJS modules
const { scrypt, randomFill, createCipheriv, } = require('node:crypto'); const algorithm = 'aes-192-cbc'; const password = 'Password used to generate key'; // First, we'll generate the key. The key length is dependent on the algorithm. // In this case for aes192, it is 24 bytes (192 bits). scrypt(password, 'salt', 24, (err, key) => { if (err) throw err; // Then, we'll generate a random initialization vector randomFill(new Uint8Array(16), (err, iv) => { if (err) throw err; // Once we have the key and iv, we can create and use the cipher... const cipher = createCipheriv(algorithm, key, iv); let encrypted = ''; cipher.setEncoding('hex'); cipher.on('data', (chunk) => encrypted += chunk); cipher.on('end', () => console.log(encrypted)); cipher.write('some clear text data'); cipher.end(); }); });
Example: Using Cipher
and piped streams:
MJS modules
import { createReadStream, createWriteStream, } from 'node:fs'; import { pipeline, } from 'node:stream'; const { scrypt, randomFill, createCipheriv, } = await import('node:crypto'); const algorithm = 'aes-192-cbc'; const password = 'Password used to generate key'; // First, we'll generate the key. The key length is dependent on the algorithm. // In this case for aes192, it is 24 bytes (192 bits). scrypt(password, 'salt', 24, (err, key) => { if (err) throw err; // Then, we'll generate a random initialization vector randomFill(new Uint8Array(16), (err, iv) => { if (err) throw err; const cipher = createCipheriv(algorithm, key, iv); const input = createReadStream('test.js'); const output = createWriteStream('test.enc'); pipeline(input, cipher, output, (err) => { if (err) throw err; }); }); });
CJS modules
const { createReadStream, createWriteStream, } = require('node:fs'); const { pipeline, } = require('node:stream'); const { scrypt, randomFill, createCipheriv, } = require('node:crypto'); const algorithm = 'aes-192-cbc'; const password = 'Password used to generate key'; // First, we'll generate the key. The key length is dependent on the algorithm. // In this case for aes192, it is 24 bytes (192 bits). scrypt(password, 'salt', 24, (err, key) => { if (err) throw err; // Then, we'll generate a random initialization vector randomFill(new Uint8Array(16), (err, iv) => { if (err) throw err; const cipher = createCipheriv(algorithm, key, iv); const input = createReadStream('test.js'); const output = createWriteStream('test.enc'); pipeline(input, cipher, output, (err) => { if (err) throw err; }); }); });
Example: Using the cipher.update()
and cipher.final()
methods:
MJS modules
const { scrypt, randomFill, createCipheriv, } = await import('node:crypto'); const algorithm = 'aes-192-cbc'; const password = 'Password used to generate key'; // First, we'll generate the key. The key length is dependent on the algorithm. // In this case for aes192, it is 24 bytes (192 bits). scrypt(password, 'salt', 24, (err, key) => { if (err) throw err; // Then, we'll generate a random initialization vector randomFill(new Uint8Array(16), (err, iv) => { if (err) throw err; const cipher = createCipheriv(algorithm, key, iv); let encrypted = cipher.update('some clear text data', 'utf8', 'hex'); encrypted += cipher.final('hex'); console.log(encrypted); }); });
CJS modules
const { scrypt, randomFill, createCipheriv, } = require('node:crypto'); const algorithm = 'aes-192-cbc'; const password = 'Password used to generate key'; // First, we'll generate the key. The key length is dependent on the algorithm. // In this case for aes192, it is 24 bytes (192 bits). scrypt(password, 'salt', 24, (err, key) => { if (err) throw err; // Then, we'll generate a random initialization vector randomFill(new Uint8Array(16), (err, iv) => { if (err) throw err; const cipher = createCipheriv(algorithm, key, iv); let encrypted = cipher.update('some clear text data', 'utf8', 'hex'); encrypted += cipher.final('hex'); console.log(encrypted); }); });
cipher.final([outputEncoding])
outputEncoding
<string> The encoding of the return value.outputEncoding
is specified, a string is returned. If an outputEncoding
is not provided, a Buffer
is returned.Once the cipher.final()
method has been called, the Cipher
object can no longer be used to encrypt data. Attempts to call cipher.final()
more than once will result in an error being thrown.
cipher.getAuthTag()
GCM
, CCM
, OCB
, and chacha20-poly1305
are currently supported), the cipher.getAuthTag()
method returns a Buffer
containing the authentication tag that has been computed from the given data.The cipher.getAuthTag()
method should only be called after encryption has been completed using the cipher.final()
method.
If the authTagLength
option was set during the cipher
instance's creation, this function will return exactly authTagLength
bytes.
cipher.setAAD(buffer[, options])
buffer
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>
options
<Object> stream.transform
options When using an authenticated encryption mode (GCM
, CCM
, OCB
, and chacha20-poly1305
are currently supported), the cipher.setAAD()
method sets the value used for the additional authenticated data (AAD) input parameter.
The plaintextLength
option is optional for GCM
and OCB
. When using CCM
, the plaintextLength
option must be specified and its value must match the length of the plaintext in bytes. See CCM mode.
The cipher.setAAD()
method must be called before cipher.update()
.
cipher.setAutoPadding([autoPadding])
When using block encryption algorithms, the Cipher
class will automatically add padding to the input data to the appropriate block size. To disable the default padding call cipher.setAutoPadding(false)
.
When autoPadding
is false
, the length of the entire input data must be a multiple of the cipher's block size or cipher.final()
will throw an error. Disabling automatic padding is useful for non-standard padding, for instance using 0x0
instead of PKCS padding.
The cipher.setAutoPadding()
method must be called before cipher.final()
.
cipher.update(data[, inputEncoding][, outputEncoding])
data
<string> | <Buffer> | <TypedArray> | <DataView>
inputEncoding
<string> The encoding of the data.outputEncoding
<string> The encoding of the return value.Updates the cipher with data
. If the inputEncoding
argument is given, the data
argument is a string using the specified encoding. If the inputEncoding
argument is not given, data
must be a Buffer
, TypedArray
, or DataView
. If data
is a Buffer
, TypedArray
, or DataView
, then inputEncoding
is ignored.
The outputEncoding
specifies the output format of the enciphered data. If the outputEncoding
is specified, a string using the specified encoding is returned. If no outputEncoding
is provided, a Buffer
is returned.
The cipher.update()
method can be called multiple times with new data until cipher.final()
is called. Calling cipher.update()
after cipher.final()
will result in an error being thrown.
Decipher
Instances of the Decipher
class are used to decrypt data. The class can be used in one of two ways:
decipher.update()
and decipher.final()
methods to produce the unencrypted data.The crypto.createDecipher()
or crypto.createDecipheriv()
methods are used to create Decipher
instances. Decipher
objects are not to be created directly using the new
keyword.
Example: Using Decipher
objects as streams:
MJS modules
import { Buffer } from 'node:buffer'; const { scryptSync, createDecipheriv, } = await import('node:crypto'); const algorithm = 'aes-192-cbc'; const password = 'Password used to generate key'; // Key length is dependent on the algorithm. In this case for aes192, it is // 24 bytes (192 bits). // Use the async `crypto.scrypt()` instead. const key = scryptSync(password, 'salt', 24); // The IV is usually passed along with the ciphertext. const iv = Buffer.alloc(16, 0); // Initialization vector. const decipher = createDecipheriv(algorithm, key, iv); let decrypted = ''; decipher.on('readable', () => { let chunk; while (null !== (chunk = decipher.read())) { decrypted += chunk.toString('utf8'); } }); decipher.on('end', () => { console.log(decrypted); // Prints: some clear text data }); // Encrypted with same algorithm, key and iv. const encrypted = 'e5f79c5915c02171eec6b212d5520d44480993d7d622a7c4c2da32f6efda0ffa'; decipher.write(encrypted, 'hex'); decipher.end();
CJS modules
const { scryptSync, createDecipheriv, } = require('node:crypto'); const { Buffer } = require('node:buffer'); const algorithm = 'aes-192-cbc'; const password = 'Password used to generate key'; // Key length is dependent on the algorithm. In this case for aes192, it is // 24 bytes (192 bits). // Use the async `crypto.scrypt()` instead. const key = scryptSync(password, 'salt', 24); // The IV is usually passed along with the ciphertext. const iv = Buffer.alloc(16, 0); // Initialization vector. const decipher = createDecipheriv(algorithm, key, iv); let decrypted = ''; decipher.on('readable', () => { let chunk; while (null !== (chunk = decipher.read())) { decrypted += chunk.toString('utf8'); } }); decipher.on('end', () => { console.log(decrypted); // Prints: some clear text data }); // Encrypted with same algorithm, key and iv. const encrypted = 'e5f79c5915c02171eec6b212d5520d44480993d7d622a7c4c2da32f6efda0ffa'; decipher.write(encrypted, 'hex'); decipher.end();
Example: Using Decipher
and piped streams:
MJS modules
import { createReadStream, createWriteStream, } from 'node:fs'; import { Buffer } from 'node:buffer'; const { scryptSync, createDecipheriv, } = await import('node:crypto'); const algorithm = 'aes-192-cbc'; const password = 'Password used to generate key'; // Use the async `crypto.scrypt()` instead. const key = scryptSync(password, 'salt', 24); // The IV is usually passed along with the ciphertext. const iv = Buffer.alloc(16, 0); // Initialization vector. const decipher = createDecipheriv(algorithm, key, iv); const input = createReadStream('test.enc'); const output = createWriteStream('test.js'); input.pipe(decipher).pipe(output);
CJS modules
const { createReadStream, createWriteStream, } = require('node:fs'); const { scryptSync, createDecipheriv, } = require('node:crypto'); const { Buffer } = require('node:buffer'); const algorithm = 'aes-192-cbc'; const password = 'Password used to generate key'; // Use the async `crypto.scrypt()` instead. const key = scryptSync(password, 'salt', 24); // The IV is usually passed along with the ciphertext. const iv = Buffer.alloc(16, 0); // Initialization vector. const decipher = createDecipheriv(algorithm, key, iv); const input = createReadStream('test.enc'); const output = createWriteStream('test.js'); input.pipe(decipher).pipe(output);
Example: Using the decipher.update()
and decipher.final()
methods:
MJS modules
import { Buffer } from 'node:buffer'; const { scryptSync, createDecipheriv, } = await import('node:crypto'); const algorithm = 'aes-192-cbc'; const password = 'Password used to generate key'; // Use the async `crypto.scrypt()` instead. const key = scryptSync(password, 'salt', 24); // The IV is usually passed along with the ciphertext. const iv = Buffer.alloc(16, 0); // Initialization vector. const decipher = createDecipheriv(algorithm, key, iv); // Encrypted using same algorithm, key and iv. const encrypted = 'e5f79c5915c02171eec6b212d5520d44480993d7d622a7c4c2da32f6efda0ffa'; let decrypted = decipher.update(encrypted, 'hex', 'utf8'); decrypted += decipher.final('utf8'); console.log(decrypted); // Prints: some clear text data
CJS modules
const { scryptSync, createDecipheriv, } = require('node:crypto'); const { Buffer } = require('node:buffer'); const algorithm = 'aes-192-cbc'; const password = 'Password used to generate key'; // Use the async `crypto.scrypt()` instead. const key = scryptSync(password, 'salt', 24); // The IV is usually passed along with the ciphertext. const iv = Buffer.alloc(16, 0); // Initialization vector. const decipher = createDecipheriv(algorithm, key, iv); // Encrypted using same algorithm, key and iv. const encrypted = 'e5f79c5915c02171eec6b212d5520d44480993d7d622a7c4c2da32f6efda0ffa'; let decrypted = decipher.update(encrypted, 'hex', 'utf8'); decrypted += decipher.final('utf8'); console.log(decrypted); // Prints: some clear text data
decipher.final([outputEncoding])
outputEncoding
<string> The encoding of the return value.outputEncoding
is specified, a string is returned. If an outputEncoding
is not provided, a Buffer
is returned.Once the decipher.final()
method has been called, the Decipher
object can no longer be used to decrypt data. Attempts to call decipher.final()
more than once will result in an error being thrown.
decipher.setAAD(buffer[, options])
buffer
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>
options
<Object> stream.transform
options When using an authenticated encryption mode (GCM
, CCM
, OCB
, and chacha20-poly1305
are currently supported), the decipher.setAAD()
method sets the value used for the additional authenticated data (AAD) input parameter.
The options
argument is optional for GCM
. When using CCM
, the plaintextLength
option must be specified and its value must match the length of the ciphertext in bytes. See CCM mode.
The decipher.setAAD()
method must be called before decipher.update()
.
When passing a string as the buffer
, please consider caveats when using strings as inputs to cryptographic APIs.
decipher.setAuthTag(buffer[, encoding])
buffer
<string> | <Buffer> | <ArrayBuffer> | <TypedArray> | <DataView>
encoding
<string> String encoding to use when buffer
is a string.When using an authenticated encryption mode (GCM
, CCM
, OCB
, and chacha20-poly1305
are currently supported), the decipher.setAuthTag()
method is used to pass in the received authentication tag. If no tag is provided, or if the cipher text has been tampered with, decipher.final()
will throw, indicating that the cipher text should be discarded due to failed authentication. If the tag length is invalid according to NIST SP 800-38D or does not match the value of the authTagLength
option, decipher.setAuthTag()
will throw an error.
The decipher.setAuthTag()
method must be called before decipher.update()
for CCM
mode or before decipher.final()
for GCM
and OCB
modes and chacha20-poly1305
. decipher.setAuthTag()
can only be called once.
When passing a string as the authentication tag, please consider caveats when using strings as inputs to cryptographic APIs.
decipher.setAutoPadding([autoPadding])
autoPadding
<boolean> Default: true
When data has been encrypted without standard block padding, calling decipher.setAutoPadding(false)
will disable automatic padding to prevent decipher.final()
from checking for and removing padding.
Turning auto padding off will only work if the input data's length is a multiple of the ciphers block size.
The decipher.setAutoPadding()
method must be called before decipher.final()
.
decipher.update(data[, inputEncoding][, outputEncoding])
data
<string> | <Buffer> | <TypedArray> | <DataView>
inputEncoding
<string> The encoding of the data
string.outputEncoding
<string> The encoding of the return value.Updates the decipher with data
. If the inputEncoding
argument is given, the data
argument is a string using the specified encoding. If the inputEncoding
argument is not given, data
must be a Buffer
. If data
is a Buffer
then inputEncoding
is ignored.
The outputEncoding
specifies the output format of the enciphered data. If the outputEncoding
is specified, a string using the specified encoding is returned. If no outputEncoding
is provided, a Buffer
is returned.
The decipher.update()
method can be called multiple times with new data until decipher.final()
is called. Calling decipher.update()
after decipher.final()
will result in an error being thrown.
DiffieHellman
The DiffieHellman
class is a utility for creating Diffie-Hellman key exchanges.
Instances of the DiffieHellman
class can be created using the crypto.createDiffieHellman()
function.
MJS modules
import assert from 'node:assert'; const { createDiffieHellman, } = await import('node:crypto'); // Generate Alice's keys... const alice = createDiffieHellman(2048); const aliceKey = alice.generateKeys(); // Generate Bob's keys... const bob = createDiffieHellman(alice.getPrime(), alice.getGenerator()); const bobKey = bob.generateKeys(); // Exchange and generate the secret... const aliceSecret = alice.computeSecret(bobKey); const bobSecret = bob.computeSecret(aliceKey); // OK assert.strictEqual(aliceSecret.toString('hex'), bobSecret.toString('hex'));
CJS modules
const assert = require('node:assert'); const { createDiffieHellman, } = require('node:crypto'); // Generate Alice's keys... const alice = createDiffieHellman(2048); const aliceKey = alice.generateKeys(); // Generate Bob's keys... const bob = createDiffieHellman(alice.getPrime(), alice.getGenerator()); const bobKey = bob.generateKeys(); // Exchange and generate the secret... const aliceSecret = alice.computeSecret(bobKey); const bobSecret = bob.computeSecret(aliceKey); // OK assert.strictEqual(aliceSecret.toString('hex'), bobSecret.toString('hex'));
diffieHellman.computeSecret(otherPublicKey[, inputEncoding][, outputEncoding])
otherPublicKey
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>
inputEncoding
<string> The encoding of an otherPublicKey
string.outputEncoding
<string> The encoding of the return value.Computes the shared secret using otherPublicKey
as the other party's public key and returns the computed shared secret. The supplied key is interpreted using the specified inputEncoding
, and secret is encoded using specified outputEncoding
. If the inputEncoding
is not provided, otherPublicKey
is expected to be a Buffer
, TypedArray
, or DataView
.
If outputEncoding
is given a string is returned; otherwise, a Buffer
is returned.
diffieHellman.generateKeys([encoding])
Generates private and public Diffie-Hellman key values unless they have been generated or computed already, and returns the public key in the specified encoding
. This key should be transferred to the other party. If encoding
is provided a string is returned; otherwise a Buffer
is returned.
This function is a thin wrapper around DH_generate_key()
. In particular, once a private key has been generated or set, calling this function only updates the public key but does not generate a new private key.
diffieHellman.getGenerator([encoding])
Returns the Diffie-Hellman generator in the specified encoding
. If encoding
is provided a string is returned; otherwise a Buffer
is returned.
diffieHellman.getPrime([encoding])
Returns the Diffie-Hellman prime in the specified encoding
. If encoding
is provided a string is returned; otherwise a Buffer
is returned.
diffieHellman.getPrivateKey([encoding])
Returns the Diffie-Hellman private key in the specified encoding
. If encoding
is provided a string is returned; otherwise a Buffer
is returned.
diffieHellman.getPublicKey([encoding])
Returns the Diffie-Hellman public key in the specified encoding
. If encoding
is provided a string is returned; otherwise a Buffer
is returned.
diffieHellman.setPrivateKey(privateKey[, encoding])
privateKey
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>
encoding
<string> The encoding of the privateKey
string.Sets the Diffie-Hellman private key. If the encoding
argument is provided, privateKey
is expected to be a string. If no encoding
is provided, privateKey
is expected to be a Buffer
, TypedArray
, or DataView
.
This function does not automatically compute the associated public key. Either diffieHellman.setPublicKey()
or diffieHellman.generateKeys()
can be used to manually provide the public key or to automatically derive it.
diffieHellman.setPublicKey(publicKey[, encoding])
publicKey
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>
encoding
<string> The encoding of the publicKey
string.Sets the Diffie-Hellman public key. If the encoding
argument is provided, publicKey
is expected to be a string. If no encoding
is provided, publicKey
is expected to be a Buffer
, TypedArray
, or DataView
.
diffieHellman.verifyError
A bit field containing any warnings and/or errors resulting from a check performed during initialization of the DiffieHellman
object.
The following values are valid for this property (as defined in node:constants
module):
DH_CHECK_P_NOT_SAFE_PRIME
DH_CHECK_P_NOT_PRIME
DH_UNABLE_TO_CHECK_GENERATOR
DH_NOT_SUITABLE_GENERATOR
DiffieHellmanGroup
The DiffieHellmanGroup
class takes a well-known modp group as its argument. It works the same as DiffieHellman
, except that it does not allow changing its keys after creation. In other words, it does not implement setPublicKey()
or setPrivateKey()
methods.
MJS modules
const { createDiffieHellmanGroup } = await import('node:crypto'); const dh = createDiffieHellmanGroup('modp16');
CJS modules
const { createDiffieHellmanGroup } = require('node:crypto'); const dh = createDiffieHellmanGroup('modp16');
The following groups are supported:
'modp14'
(2048 bits, RFC 3526 Section 3)'modp15'
(3072 bits, RFC 3526 Section 4)'modp16'
(4096 bits, RFC 3526 Section 5)'modp17'
(6144 bits, RFC 3526 Section 6)'modp18'
(8192 bits, RFC 3526 Section 7)The following groups are still supported but deprecated (see Caveats):
'modp1'
(768 bits, RFC 2409 Section 6.1)
'modp2'
(1024 bits, RFC 2409 Section 6.2)
'modp5'
(1536 bits, RFC 3526 Section 2)
These deprecated groups might be removed in future versions of Node.js.
ECDH
The ECDH
class is a utility for creating Elliptic Curve Diffie-Hellman (ECDH) key exchanges.
Instances of the ECDH
class can be created using the crypto.createECDH()
function.
MJS modules
import assert from 'node:assert'; const { createECDH, } = await import('node:crypto'); // Generate Alice's keys... const alice = createECDH('secp521r1'); const aliceKey = alice.generateKeys(); // Generate Bob's keys... const bob = createECDH('secp521r1'); const bobKey = bob.generateKeys(); // Exchange and generate the secret... const aliceSecret = alice.computeSecret(bobKey); const bobSecret = bob.computeSecret(aliceKey); assert.strictEqual(aliceSecret.toString('hex'), bobSecret.toString('hex')); // OK
CJS modules
const assert = require('node:assert'); const { createECDH, } = require('node:crypto'); // Generate Alice's keys... const alice = createECDH('secp521r1'); const aliceKey = alice.generateKeys(); // Generate Bob's keys... const bob = createECDH('secp521r1'); const bobKey = bob.generateKeys(); // Exchange and generate the secret... const aliceSecret = alice.computeSecret(bobKey); const bobSecret = bob.computeSecret(aliceKey); assert.strictEqual(aliceSecret.toString('hex'), bobSecret.toString('hex')); // OK
ECDH.convertKey(key, curve[, inputEncoding[, outputEncoding[, format]]])
key
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>
curve
<string>
inputEncoding
<string> The encoding of the key
string.outputEncoding
<string> The encoding of the return value.format
<string> Default: 'uncompressed'
Converts the EC Diffie-Hellman public key specified by key
and curve
to the format specified by format
. The format
argument specifies point encoding and can be 'compressed'
, 'uncompressed'
or 'hybrid'
. The supplied key is interpreted using the specified inputEncoding
, and the returned key is encoded using the specified outputEncoding
.
Use crypto.getCurves()
to obtain a list of available curve names. On recent OpenSSL releases, openssl ecparam -list_curves
will also display the name and description of each available elliptic curve.
If format
is not specified the point will be returned in 'uncompressed'
format.
If the inputEncoding
is not provided, key
is expected to be a Buffer
, TypedArray
, or DataView
.
Example (uncompressing a key):
MJS modules
const { createECDH, ECDH, } = await import('node:crypto'); const ecdh = createECDH('secp256k1'); ecdh.generateKeys(); const compressedKey = ecdh.getPublicKey('hex', 'compressed'); const uncompressedKey = ECDH.convertKey(compressedKey, 'secp256k1', 'hex', 'hex', 'uncompressed'); // The converted key and the uncompressed public key should be the same console.log(uncompressedKey === ecdh.getPublicKey('hex'));
CJS modules
const { createECDH, ECDH, } = require('node:crypto'); const ecdh = createECDH('secp256k1'); ecdh.generateKeys(); const compressedKey = ecdh.getPublicKey('hex', 'compressed'); const uncompressedKey = ECDH.convertKey(compressedKey, 'secp256k1', 'hex', 'hex', 'uncompressed'); // The converted key and the uncompressed public key should be the same console.log(uncompressedKey === ecdh.getPublicKey('hex'));
ecdh.computeSecret(otherPublicKey[, inputEncoding][, outputEncoding])
otherPublicKey
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>
inputEncoding
<string> The encoding of the otherPublicKey
string.outputEncoding
<string> The encoding of the return value.Computes the shared secret using otherPublicKey
as the other party's public key and returns the computed shared secret. The supplied key is interpreted using specified inputEncoding
, and the returned secret is encoded using the specified outputEncoding
. If the inputEncoding
is not provided, otherPublicKey
is expected to be a Buffer
, TypedArray
, or DataView
.
If outputEncoding
is given a string will be returned; otherwise a Buffer
is returned.
ecdh.computeSecret
will throw an ERR_CRYPTO_ECDH_INVALID_PUBLIC_KEY
error when otherPublicKey
lies outside of the elliptic curve. Since otherPublicKey
is usually supplied from a remote user over an insecure network, be sure to handle this exception accordingly.
ecdh.generateKeys([encoding[, format]])
encoding
<string> The encoding of the return value.format
<string> Default: 'uncompressed'
Generates private and public EC Diffie-Hellman key values, and returns the public key in the specified format
and encoding
. This key should be transferred to the other party.
The format
argument specifies point encoding and can be 'compressed'
or 'uncompressed'
. If format
is not specified, the point will be returned in 'uncompressed'
format.
If encoding
is provided a string is returned; otherwise a Buffer
is returned.
ecdh.getPrivateKey([encoding])
encoding
<string> The encoding of the return value.encoding
.If encoding
is specified, a string is returned; otherwise a Buffer
is returned.
ecdh.getPublicKey([encoding][, format])
encoding
<string> The encoding of the return value.format
<string> Default: 'uncompressed'
encoding
and format
.The format
argument specifies point encoding and can be 'compressed'
or 'uncompressed'
. If format
is not specified the point will be returned in 'uncompressed'
format.
If encoding
is specified, a string is returned; otherwise a Buffer
is returned.
ecdh.setPrivateKey(privateKey[, encoding])
privateKey
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>
encoding
<string> The encoding of the privateKey
string.Sets the EC Diffie-Hellman private key. If encoding
is provided, privateKey
is expected to be a string; otherwise privateKey
is expected to be a Buffer
, TypedArray
, or DataView
.
If privateKey
is not valid for the curve specified when the ECDH
object was created, an error is thrown. Upon setting the private key, the associated public point (key) is also generated and set in the ECDH
object.
ecdh.setPublicKey(publicKey[, encoding])
publicKey
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>
encoding
<string> The encoding of the publicKey
string.Sets the EC Diffie-Hellman public key. If encoding
is provided publicKey
is expected to be a string; otherwise a Buffer
, TypedArray
, or DataView
is expected.
There is not normally a reason to call this method because ECDH
only requires a private key and the other party's public key to compute the shared secret. Typically either ecdh.generateKeys()
or ecdh.setPrivateKey()
will be called. The ecdh.setPrivateKey()
method attempts to generate the public point/key associated with the private key being set.
Example (obtaining a shared secret):
MJS modules
const { createECDH, createHash, } = await import('node:crypto'); const alice = createECDH('secp256k1'); const bob = createECDH('secp256k1'); // This is a shortcut way of specifying one of Alice's previous private // keys. It would be unwise to use such a predictable private key in a real // application. alice.setPrivateKey( createHash('sha256').update('alice', 'utf8').digest(), ); // Bob uses a newly generated cryptographically strong // pseudorandom key pair bob.generateKeys(); const aliceSecret = alice.computeSecret(bob.getPublicKey(), null, 'hex'); const bobSecret = bob.computeSecret(alice.getPublicKey(), null, 'hex'); // aliceSecret and bobSecret should be the same shared secret value console.log(aliceSecret === bobSecret);
CJS modules
const { createECDH, createHash, } = require('node:crypto'); const alice = createECDH('secp256k1'); const bob = createECDH('secp256k1'); // This is a shortcut way of specifying one of Alice's previous private // keys. It would be unwise to use such a predictable private key in a real // application. alice.setPrivateKey( createHash('sha256').update('alice', 'utf8').digest(), ); // Bob uses a newly generated cryptographically strong // pseudorandom key pair bob.generateKeys(); const aliceSecret = alice.computeSecret(bob.getPublicKey(), null, 'hex'); const bobSecret = bob.computeSecret(alice.getPublicKey(), null, 'hex'); // aliceSecret and bobSecret should be the same shared secret value console.log(aliceSecret === bobSecret);
Hash
The Hash
class is a utility for creating hash digests of data. It can be used in one of two ways:
hash.update()
and hash.digest()
methods to produce the computed hash.The crypto.createHash()
method is used to create Hash
instances. Hash
objects are not to be created directly using the new
keyword.
Example: Using Hash
objects as streams:
MJS modules
const { createHash, } = await import('node:crypto'); const hash = createHash('sha256'); hash.on('readable', () => { // Only one element is going to be produced by the // hash stream. const data = hash.read(); if (data) { console.log(data.toString('hex')); // Prints: // 6a2da20943931e9834fc12cfe5bb47bbd9ae43489a30726962b576f4e3993e50 } }); hash.write('some data to hash'); hash.end();
CJS modules
const { createHash, } = require('node:crypto'); const hash = createHash('sha256'); hash.on('readable', () => { // Only one element is going to be produced by the // hash stream. const data = hash.read(); if (data) { console.log(data.toString('hex')); // Prints: // 6a2da20943931e9834fc12cfe5bb47bbd9ae43489a30726962b576f4e3993e50 } }); hash.write('some data to hash'); hash.end();
Example: Using Hash
and piped streams:
MJS modules
import { createReadStream } from 'node:fs'; import { stdout } from 'node:process'; const { createHash } = await import('node:crypto'); const hash = createHash('sha256'); const input = createReadStream('test.js'); input.pipe(hash).setEncoding('hex').pipe(stdout);
CJS modules
const { createReadStream } = require('node:fs'); const { createHash } = require('node:crypto'); const { stdout } = require('node:process'); const hash = createHash('sha256'); const input = createReadStream('test.js'); input.pipe(hash).setEncoding('hex').pipe(stdout);
Example: Using the hash.update()
and hash.digest()
methods:
MJS modules
const { createHash, } = await import('node:crypto'); const hash = createHash('sha256'); hash.update('some data to hash'); console.log(hash.digest('hex')); // Prints: // 6a2da20943931e9834fc12cfe5bb47bbd9ae43489a30726962b576f4e3993e50
CJS modules
const { createHash, } = require('node:crypto'); const hash = createHash('sha256'); hash.update('some data to hash'); console.log(hash.digest('hex')); // Prints: // 6a2da20943931e9834fc12cfe5bb47bbd9ae43489a30726962b576f4e3993e50
hash.copy([options])
options
<Object> stream.transform
options
Creates a new Hash
object that contains a deep copy of the internal state of the current Hash
object.
The optional options
argument controls stream behavior. For XOF hash functions such as 'shake256'
, the outputLength
option can be used to specify the desired output length in bytes.
An error is thrown when an attempt is made to copy the Hash
object after its hash.digest()
method has been called.
MJS modules
// Calculate a rolling hash. const { createHash, } = await import('node:crypto'); const hash = createHash('sha256'); hash.update('one'); console.log(hash.copy().digest('hex')); hash.update('two'); console.log(hash.copy().digest('hex')); hash.update('three'); console.log(hash.copy().digest('hex')); // Etc.
CJS modules
// Calculate a rolling hash. const { createHash, } = require('node:crypto'); const hash = createHash('sha256'); hash.update('one'); console.log(hash.copy().digest('hex')); hash.update('two'); console.log(hash.copy().digest('hex')); hash.update('three'); console.log(hash.copy().digest('hex')); // Etc.
hash.digest([encoding])
Calculates the digest of all of the data passed to be hashed (using the hash.update()
method). If encoding
is provided a string will be returned; otherwise a Buffer
is returned.
The Hash
object can not be used again after hash.digest()
method has been called. Multiple calls will cause an error to be thrown.
hash.update(data[, inputEncoding])
data
<string> | <Buffer> | <TypedArray> | <DataView>
inputEncoding
<string> The encoding of the data
string.Updates the hash content with the given data
, the encoding of which is given in inputEncoding
. If encoding
is not provided, and the data
is a string, an encoding of 'utf8'
is enforced. If data
is a Buffer
, TypedArray
, or DataView
, then inputEncoding
is ignored.
This can be called many times with new data as it is streamed.
Hmac
The Hmac
class is a utility for creating cryptographic HMAC digests. It can be used in one of two ways:
hmac.update()
and hmac.digest()
methods to produce the computed HMAC digest.The crypto.createHmac()
method is used to create Hmac
instances. Hmac
objects are not to be created directly using the new
keyword.
Example: Using Hmac
objects as streams:
MJS modules
const { createHmac, } = await import('node:crypto'); const hmac = createHmac('sha256', 'a secret'); hmac.on('readable', () => { // Only one element is going to be produced by the // hash stream. const data = hmac.read(); if (data) { console.log(data.toString('hex')); // Prints: // 7fd04df92f636fd450bc841c9418e5825c17f33ad9c87c518115a45971f7f77e } }); hmac.write('some data to hash'); hmac.end();
CJS modules
const { createHmac, } = require('node:crypto'); const hmac = createHmac('sha256', 'a secret'); hmac.on('readable', () => { // Only one element is going to be produced by the // hash stream. const data = hmac.read(); if (data) { console.log(data.toString('hex')); // Prints: // 7fd04df92f636fd450bc841c9418e5825c17f33ad9c87c518115a45971f7f77e } }); hmac.write('some data to hash'); hmac.end();
Example: Using Hmac
and piped streams:
MJS modules
import { createReadStream } from 'node:fs'; import { stdout } from 'node:process'; const { createHmac, } = await import('node:crypto'); const hmac = createHmac('sha256', 'a secret'); const input = createReadStream('test.js'); input.pipe(hmac).pipe(stdout);
CJS modules
const { createReadStream, } = require('node:fs'); const { createHmac, } = require('node:crypto'); const { stdout } = require('node:process'); const hmac = createHmac('sha256', 'a secret'); const input = createReadStream('test.js'); input.pipe(hmac).pipe(stdout);
Example: Using the hmac.update()
and hmac.digest()
methods:
MJS modules
const { createHmac, } = await import('node:crypto'); const hmac = createHmac('sha256', 'a secret'); hmac.update('some data to hash'); console.log(hmac.digest('hex')); // Prints: // 7fd04df92f636fd450bc841c9418e5825c17f33ad9c87c518115a45971f7f77e
CJS modules
const { createHmac, } = require('node:crypto'); const hmac = createHmac('sha256', 'a secret'); hmac.update('some data to hash'); console.log(hmac.digest('hex')); // Prints: // 7fd04df92f636fd450bc841c9418e5825c17f33ad9c87c518115a45971f7f77e
hmac.digest([encoding])
Calculates the HMAC digest of all of the data passed using hmac.update()
. If encoding
is provided a string is returned; otherwise a Buffer
is returned;
The Hmac
object can not be used again after hmac.digest()
has been called. Multiple calls to hmac.digest()
will result in an error being thrown.
hmac.update(data[, inputEncoding])
data
<string> | <Buffer> | <TypedArray> | <DataView>
inputEncoding
<string> The encoding of the data
string.Updates the Hmac
content with the given data
, the encoding of which is given in inputEncoding
. If encoding
is not provided, and the data
is a string, an encoding of 'utf8'
is enforced. If data
is a Buffer
, TypedArray
, or DataView
, then inputEncoding
is ignored.
This can be called many times with new data as it is streamed.
KeyObject
Node.js uses a KeyObject
class to represent a symmetric or asymmetric key, and each kind of key exposes different functions. The crypto.createSecretKey()
, crypto.createPublicKey()
and crypto.createPrivateKey()
methods are used to create KeyObject
instances. KeyObject
objects are not to be created directly using the new
keyword.
Most applications should consider using the new KeyObject
API instead of passing keys as strings or Buffer
s due to improved security features.
KeyObject
instances can be passed to other threads via postMessage()
. The receiver obtains a cloned KeyObject
, and the KeyObject
does not need to be listed in the transferList
argument.
KeyObject.from(key)
key
<CryptoKey>
Example: Converting a CryptoKey
instance to a KeyObject
:
MJS modules
const { KeyObject } = await import('node:crypto'); const { subtle } = globalThis.crypto; const key = await subtle.generateKey({ name: 'HMAC', hash: 'SHA-256', length: 256, }, true, ['sign', 'verify']); const keyObject = KeyObject.from(key); console.log(keyObject.symmetricKeySize); // Prints: 32 (symmetric key size in bytes)
CJS modules
const { KeyObject } = require('node:crypto'); const { subtle } = globalThis.crypto; (async function() { const key = await subtle.generateKey({ name: 'HMAC', hash: 'SHA-256', length: 256, }, true, ['sign', 'verify']); const keyObject = KeyObject.from(key); console.log(keyObject.symmetricKeySize); // Prints: 32 (symmetric key size in bytes) })();
keyObject.asymmetricKeyDetails
modulusLength
: <number> Key size in bits (RSA, DSA).publicExponent
: <bigint> Public exponent (RSA).hashAlgorithm
: <string> Name of the message digest (RSA-PSS).mgf1HashAlgorithm
: <string> Name of the message digest used by MGF1 (RSA-PSS).saltLength
: <number> Minimal salt length in bytes (RSA-PSS).divisorLength
: <number> Size of q
in bits (DSA).namedCurve
: <string> Name of the curve (EC).This property exists only on asymmetric keys. Depending on the type of the key, this object contains information about the key. None of the information obtained through this property can be used to uniquely identify a key or to compromise the security of the key.
For RSA-PSS keys, if the key material contains a RSASSA-PSS-params
sequence, the hashAlgorithm
, mgf1HashAlgorithm
, and saltLength
properties will be set.
Other key details might be exposed via this API using additional attributes.
keyObject.asymmetricKeyType
For asymmetric keys, this property represents the type of the key. Supported key types are:
'rsa'
(OID 1.2.840.113549.1.1.1)'rsa-pss'
(OID 1.2.840.113549.1.1.10)'dsa'
(OID 1.2.840.10040.4.1)'ec'
(OID 1.2.840.10045.2.1)'x25519'
(OID 1.3.101.110)'x448'
(OID 1.3.101.111)'ed25519'
(OID 1.3.101.112)'ed448'
(OID 1.3.101.113)'dh'
(OID 1.2.840.113549.1.3.1)This property is undefined
for unrecognized KeyObject
types and symmetric keys.
keyObject.export([options])
For symmetric keys, the following encoding options can be used:
format
: <string> Must be 'buffer'
(default) or 'jwk'
.For public keys, the following encoding options can be used:
type
: <string> Must be one of 'pkcs1'
(RSA only) or 'spki'
.format
: <string> Must be 'pem'
, 'der'
, or 'jwk'
.For private keys, the following encoding options can be used:
type
: <string> Must be one of 'pkcs1'
(RSA only), 'pkcs8'
or 'sec1'
(EC only).format
: <string> Must be 'pem'
, 'der'
, or 'jwk'
.cipher
: <string> If specified, the private key will be encrypted with the given cipher
and passphrase
using PKCS#5 v2.0 password based encryption.passphrase
: <string> | <Buffer> The passphrase to use for encryption, see cipher
.The result type depends on the selected encoding format, when PEM the result is a string, when DER it will be a buffer containing the data encoded as DER, when JWK it will be an object.
When JWK encoding format was selected, all other encoding options are ignored.
PKCS#1, SEC1, and PKCS#8 type keys can be encrypted by using a combination of the cipher
and format
options. The PKCS#8 type
can be used with any format
to encrypt any key algorithm (RSA, EC, or DH) by specifying a cipher
. PKCS#1 and SEC1 can only be encrypted by specifying a cipher
when the PEM format
is used. For maximum compatibility, use PKCS#8 for encrypted private keys. Since PKCS#8 defines its own encryption mechanism, PEM-level encryption is not supported when encrypting a PKCS#8 key. See RFC 5208 for PKCS#8 encryption and RFC 1421 for PKCS#1 and SEC1 encryption.
keyObject.equals(otherKeyObject)
otherKeyObject
: <KeyObject> A KeyObject
with which to compare keyObject
.Returns true
or false
depending on whether the keys have exactly the same type, value, and parameters. This method is not constant time.
keyObject.symmetricKeySize
For secret keys, this property represents the size of the key in bytes. This property is undefined
for asymmetric keys.
keyObject.type
Depending on the type of this KeyObject
, this property is either 'secret'
for secret (symmetric) keys, 'public'
for public (asymmetric) keys or 'private'
for private (asymmetric) keys.
Sign
The Sign
class is a utility for generating signatures. It can be used in one of two ways:
sign.sign()
method is used to generate and return the signature, orsign.update()
and sign.sign()
methods to produce the signature.The crypto.createSign()
method is used to create Sign
instances. The argument is the string name of the hash function to use. Sign
objects are not to be created directly using the new
keyword.
Example: Using Sign
and Verify
objects as streams:
MJS modules
const { generateKeyPairSync, createSign, createVerify, } = await import('node:crypto'); const { privateKey, publicKey } = generateKeyPairSync('ec', { namedCurve: 'sect239k1', }); const sign = createSign('SHA256'); sign.write('some data to sign'); sign.end(); const signature = sign.sign(privateKey, 'hex'); const verify = createVerify('SHA256'); verify.write('some data to sign'); verify.end(); console.log(verify.verify(publicKey, signature, 'hex')); // Prints: true
CJS modules
const { generateKeyPairSync, createSign, createVerify, } = require('node:crypto'); const { privateKey, publicKey } = generateKeyPairSync('ec', { namedCurve: 'sect239k1', }); const sign = createSign('SHA256'); sign.write('some data to sign'); sign.end(); const signature = sign.sign(privateKey, 'hex'); const verify = createVerify('SHA256'); verify.write('some data to sign'); verify.end(); console.log(verify.verify(publicKey, signature, 'hex')); // Prints: true
Example: Using the sign.update()
and verify.update()
methods:
MJS modules
const { generateKeyPairSync, createSign, createVerify, } = await import('node:crypto'); const { privateKey, publicKey } = generateKeyPairSync('rsa', { modulusLength: 2048, }); const sign = createSign('SHA256'); sign.update('some data to sign'); sign.end(); const signature = sign.sign(privateKey); const verify = createVerify('SHA256'); verify.update('some data to sign'); verify.end(); console.log(verify.verify(publicKey, signature)); // Prints: true
CJS modules
const { generateKeyPairSync, createSign, createVerify, } = require('node:crypto'); const { privateKey, publicKey } = generateKeyPairSync('rsa', { modulusLength: 2048, }); const sign = createSign('SHA256'); sign.update('some data to sign'); sign.end(); const signature = sign.sign(privateKey); const verify = createVerify('SHA256'); verify.update('some data to sign'); verify.end(); console.log(verify.verify(publicKey, signature)); // Prints: true
sign.sign(privateKey[, outputEncoding])
privateKey
<Object> | <string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView> | <KeyObject> | <CryptoKey> outputEncoding
<string> The encoding of the return value.Calculates the signature on all the data passed through using either sign.update()
or sign.write()
.
If privateKey
is not a KeyObject
, this function behaves as if privateKey
had been passed to crypto.createPrivateKey()
. If it is an object, the following additional properties can be passed:
dsaEncoding
<string> For DSA and ECDSA, this option specifies the format of the generated signature. It can be one of the following:
'der'
(default): DER-encoded ASN.1 signature structure encoding (r, s)
.'ieee-p1363'
: Signature format r || s
as proposed in IEEE-P1363.padding
<integer> Optional padding value for RSA, one of the following:
crypto.constants.RSA_PKCS1_PADDING
(default)crypto.constants.RSA_PKCS1_PSS_PADDING
RSA_PKCS1_PSS_PADDING
will use MGF1 with the same hash function used to sign the message as specified in section 3.1 of RFC 4055, unless an MGF1 hash function has been specified as part of the key in compliance with section 3.3 of RFC 4055.
saltLength
<integer> Salt length for when padding is RSA_PKCS1_PSS_PADDING
. The special value crypto.constants.RSA_PSS_SALTLEN_DIGEST
sets the salt length to the digest size, crypto.constants.RSA_PSS_SALTLEN_MAX_SIGN
(default) sets it to the maximum permissible value.
If outputEncoding
is provided a string is returned; otherwise a Buffer
is returned.
The Sign
object can not be again used after sign.sign()
method has been called. Multiple calls to sign.sign()
will result in an error being thrown.
sign.update(data[, inputEncoding])
data
<string> | <Buffer> | <TypedArray> | <DataView>
inputEncoding
<string> The encoding of the data
string.Updates the Sign
content with the given data
, the encoding of which is given in inputEncoding
. If encoding
is not provided, and the data
is a string, an encoding of 'utf8'
is enforced. If data
is a Buffer
, TypedArray
, or DataView
, then inputEncoding
is ignored.
This can be called many times with new data as it is streamed.
Verify
The Verify
class is a utility for verifying signatures. It can be used in one of two ways:
verify.update()
and verify.verify()
methods to verify the signature.The crypto.createVerify()
method is used to create Verify
instances. Verify
objects are not to be created directly using the new
keyword.
See Sign
for examples.
verify.update(data[, inputEncoding])
data
<string> | <Buffer> | <TypedArray> | <DataView>
inputEncoding
<string> The encoding of the data
string.Updates the Verify
content with the given data
, the encoding of which is given in inputEncoding
. If inputEncoding
is not provided, and the data
is a string, an encoding of 'utf8'
is enforced. If data
is a Buffer
, TypedArray
, or DataView
, then inputEncoding
is ignored.
This can be called many times with new data as it is streamed.
verify.verify(object, signature[, signatureEncoding])
object
<Object> | <string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView> | <KeyObject> | <CryptoKey> signature
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>
signatureEncoding
<string> The encoding of the signature
string.true
or false
depending on the validity of the signature for the data and public key.Verifies the provided data using the given object
and signature
.
If object
is not a KeyObject
, this function behaves as if object
had been passed to crypto.createPublicKey()
. If it is an object, the following additional properties can be passed:
dsaEncoding
<string> For DSA and ECDSA, this option specifies the format of the signature. It can be one of the following:
'der'
(default): DER-encoded ASN.1 signature structure encoding (r, s)
.'ieee-p1363'
: Signature format r || s
as proposed in IEEE-P1363.padding
<integer> Optional padding value for RSA, one of the following:
crypto.constants.RSA_PKCS1_PADDING
(default)crypto.constants.RSA_PKCS1_PSS_PADDING
RSA_PKCS1_PSS_PADDING
will use MGF1 with the same hash function used to verify the message as specified in section 3.1 of RFC 4055, unless an MGF1 hash function has been specified as part of the key in compliance with section 3.3 of RFC 4055.
saltLength
<integer> Salt length for when padding is RSA_PKCS1_PSS_PADDING
. The special value crypto.constants.RSA_PSS_SALTLEN_DIGEST
sets the salt length to the digest size, crypto.constants.RSA_PSS_SALTLEN_AUTO
(default) causes it to be determined automatically.
The signature
argument is the previously calculated signature for the data, in the signatureEncoding
. If a signatureEncoding
is specified, the signature
is expected to be a string; otherwise signature
is expected to be a Buffer
, TypedArray
, or DataView
.
The verify
object can not be used again after verify.verify()
has been called. Multiple calls to verify.verify()
will result in an error being thrown.
Because public keys can be derived from private keys, a private key may be passed instead of a public key.
X509Certificate
Encapsulates an X509 certificate and provides read-only access to its information.
MJS modules
const { X509Certificate } = await import('node:crypto'); const x509 = new X509Certificate('{... pem encoded cert ...}'); console.log(x509.subject);
CJS modules
const { X509Certificate } = require('node:crypto'); const x509 = new X509Certificate('{... pem encoded cert ...}'); console.log(x509.subject);
new X509Certificate(buffer)
buffer
<string> | <TypedArray> | <Buffer> | <DataView> A PEM or DER encoded X509 Certificate.x509.ca
true
if this is a Certificate Authority (CA) certificate.x509.checkEmail(email[, options])
email
<string>
options
<Object> subject
<string> 'default'
, 'always'
, or 'never'
. Default: 'default'
.email
if the certificate matches, undefined
if it does not.Checks whether the certificate matches the given email address.
If the 'subject'
option is undefined or set to 'default'
, the certificate subject is only considered if the subject alternative name extension either does not exist or does not contain any email addresses.
If the 'subject'
option is set to 'always'
and if the subject alternative name extension either does not exist or does not contain a matching email address, the certificate subject is considered.
If the 'subject'
option is set to 'never'
, the certificate subject is never considered, even if the certificate contains no subject alternative names.
x509.checkHost(name[, options])
name
<string>
options
<Object> name
, or undefined
if no subject name matches name
.Checks whether the certificate matches the given host name.
If the certificate matches the given host name, the matching subject name is returned. The returned name might be an exact match (e.g., foo.example.com
) or it might contain wildcards (e.g., *.example.com
). Because host name comparisons are case-insensitive, the returned subject name might also differ from the given name
in capitalization.
If the 'subject'
option is undefined or set to 'default'
, the certificate subject is only considered if the subject alternative name extension either does not exist or does not contain any DNS names. This behavior is consistent with RFC 2818 ("HTTP Over TLS").
If the 'subject'
option is set to 'always'
and if the subject alternative name extension either does not exist or does not contain a matching DNS name, the certificate subject is considered.
If the 'subject'
option is set to 'never'
, the certificate subject is never considered, even if the certificate contains no subject alternative names.
x509.checkIP(ip)
ip
<string>
ip
if the certificate matches, undefined
if it does not.Checks whether the certificate matches the given IP address (IPv4 or IPv6).
Only RFC 5280 iPAddress
subject alternative names are considered, and they must match the given ip
address exactly. Other subject alternative names as well as the subject field of the certificate are ignored.
x509.checkIssued(otherCert)
otherCert
<X509Certificate>
Checks whether this certificate was issued by the given otherCert
.
x509.checkPrivateKey(privateKey)
privateKey
<KeyObject> A private key.Checks whether the public key for this certificate is consistent with the given private key.
x509.fingerprint
The SHA-1 fingerprint of this certificate.
Because SHA-1 is cryptographically broken and because the security of SHA-1 is significantly worse than that of algorithms that are commonly used to sign certificates, consider using x509.fingerprint256
instead.
x509.fingerprint256
The SHA-256 fingerprint of this certificate.
x509.fingerprint512
The SHA-512 fingerprint of this certificate.
Because computing the SHA-256 fingerprint is usually faster and because it is only half the size of the SHA-512 fingerprint, x509.fingerprint256
may be a better choice. While SHA-512 presumably provides a higher level of security in general, the security of SHA-256 matches that of most algorithms that are commonly used to sign certificates.
x509.infoAccess
A textual representation of the certificate's authority information access extension.
This is a line feed separated list of access descriptions. Each line begins with the access method and the kind of the access location, followed by a colon and the value associated with the access location.
After the prefix denoting the access method and the kind of the access location, the remainder of each line might be enclosed in quotes to indicate that the value is a JSON string literal. For backward compatibility, Node.js only uses JSON string literals within this property when necessary to avoid ambiguity. Third-party code should be prepared to handle both possible entry formats.
x509.issuer
The issuer identification included in this certificate.
x509.issuerCertificate
The issuer certificate or undefined
if the issuer certificate is not available.
x509.keyUsage
An array detailing the key usages for this certificate.
x509.publicKey
The public key <KeyObject> for this certificate.
x509.raw
A Buffer
containing the DER encoding of this certificate.
x509.serialNumber
The serial number of this certificate.
Serial numbers are assigned by certificate authorities and do not uniquely identify certificates. Consider using x509.fingerprint256
as a unique identifier instead.
x509.subject
The complete subject of this certificate.
x509.subjectAltName
The subject alternative name specified for this certificate.
This is a comma-separated list of subject alternative names. Each entry begins with a string identifying the kind of the subject alternative name followed by a colon and the value associated with the entry.
Earlier versions of Node.js incorrectly assumed that it is safe to split this property at the two-character sequence ', '
(see CVE-2021-44532). However, both malicious and legitimate certificates can contain subject alternative names that include this sequence when represented as a string.
After the prefix denoting the type of the entry, the remainder of each entry might be enclosed in quotes to indicate that the value is a JSON string literal. For backward compatibility, Node.js only uses JSON string literals within this property when necessary to avoid ambiguity. Third-party code should be prepared to handle both possible entry formats.
x509.toJSON()
There is no standard JSON encoding for X509 certificates. The toJSON()
method returns a string containing the PEM encoded certificate.
x509.toLegacyObject()
Returns information about this certificate using the legacy certificate object encoding.
x509.toString()
Returns the PEM-encoded certificate.
x509.validFrom
The date/time from which this certificate is considered valid.
x509.validTo
The date/time until which this certificate is considered valid.
x509.verify(publicKey)
publicKey
<KeyObject> A public key.Verifies that this certificate was signed by the given public key. Does not perform any other validation checks on the certificate.
node:crypto
module methods and properties
crypto.constants
An object containing commonly used constants for crypto and security related operations. The specific constants currently defined are described in Crypto constants.
crypto.fips
Property for checking and controlling whether a FIPS compliant crypto provider is currently in use. Setting to true requires a FIPS build of Node.js.
This property is deprecated. Please use crypto.setFips()
and crypto.getFips()
instead.
crypto.checkPrime(candidate[, options], callback)
candidate
<ArrayBuffer> | <SharedArrayBuffer> | <TypedArray> | <Buffer> | <DataView> | <bigint> A possible prime encoded as a sequence of big endian octets of arbitrary length.options
<Object> checks
<number> The number of Miller-Rabin probabilistic primality iterations to perform. When the value is 0
(zero), a number of checks is used that yields a false positive rate of at most 2-64 for random input. Care must be used when selecting a number of checks. Refer to the OpenSSL documentation for the BN_is_prime_ex
function nchecks
options for more details. Default: 0
callback
<Function> Checks the primality of the candidate
.
crypto.checkPrimeSync(candidate[, options])
candidate
<ArrayBuffer> | <SharedArrayBuffer> | <TypedArray> | <Buffer> | <DataView> | <bigint> A possible prime encoded as a sequence of big endian octets of arbitrary length.options
<Object> checks
<number> The number of Miller-Rabin probabilistic primality iterations to perform. When the value is 0
(zero), a number of checks is used that yields a false positive rate of at most 2-64 for random input. Care must be used when selecting a number of checks. Refer to the OpenSSL documentation for the BN_is_prime_ex
function nchecks
options for more details. Default: 0
true
if the candidate is a prime with an error probability less than 0.25 ** options.checks
.Checks the primality of the candidate
.
crypto.createCipher(algorithm, password[, options])
crypto.createCipheriv()
instead.algorithm
<string>
password
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>
options
<Object> stream.transform
options
Creates and returns a Cipher
object that uses the given algorithm
and password
.
The options
argument controls stream behavior and is optional except when a cipher in CCM or OCB mode (e.g. 'aes-128-ccm'
) is used. In that case, the authTagLength
option is required and specifies the length of the authentication tag in bytes, see CCM mode. In GCM mode, the authTagLength
option is not required but can be used to set the length of the authentication tag that will be returned by getAuthTag()
and defaults to 16 bytes. For chacha20-poly1305
, the authTagLength
option defaults to 16 bytes.
The algorithm
is dependent on OpenSSL, examples are 'aes192'
, etc. On recent OpenSSL releases, openssl list -cipher-algorithms
will display the available cipher algorithms.
The password
is used to derive the cipher key and initialization vector (IV). The value must be either a 'latin1'
encoded string, a Buffer
, a TypedArray
, or a DataView
.
This function is semantically insecure for all supported ciphers and fatally flawed for ciphers in counter mode (such as CTR, GCM, or CCM).
The implementation of crypto.createCipher()
derives keys using the OpenSSL function EVP_BytesToKey
with the digest algorithm set to MD5, one iteration, and no salt. The lack of salt allows dictionary attacks as the same password always creates the same key. The low iteration count and non-cryptographically secure hash algorithm allow passwords to be tested very rapidly.
In line with OpenSSL's recommendation to use a more modern algorithm instead of EVP_BytesToKey
it is recommended that developers derive a key and IV on their own using crypto.scrypt()
and to use crypto.createCipheriv()
to create the Cipher
object. Users should not use ciphers with counter mode (e.g. CTR, GCM, or CCM) in crypto.createCipher()
. A warning is emitted when they are used in order to avoid the risk of IV reuse that causes vulnerabilities. For the case when IV is reused in GCM, see Nonce-Disrespecting Adversaries for details.
crypto.createCipheriv(algorithm, key, iv[, options])
algorithm
<string>
key
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView> | <KeyObject> | <CryptoKey>
iv
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView> | <null>
options
<Object> stream.transform
options
Creates and returns a Cipher
object, with the given algorithm
, key
and initialization vector (iv
).
The options
argument controls stream behavior and is optional except when a cipher in CCM or OCB mode (e.g. 'aes-128-ccm'
) is used. In that case, the authTagLength
option is required and specifies the length of the authentication tag in bytes, see CCM mode. In GCM mode, the authTagLength
option is not required but can be used to set the length of the authentication tag that will be returned by getAuthTag()
and defaults to 16 bytes. For chacha20-poly1305
, the authTagLength
option defaults to 16 bytes.
The algorithm
is dependent on OpenSSL, examples are 'aes192'
, etc. On recent OpenSSL releases, openssl list -cipher-algorithms
will display the available cipher algorithms.
The key
is the raw key used by the algorithm
and iv
is an initialization vector. Both arguments must be 'utf8'
encoded strings, Buffers, TypedArray
, or DataView
s. The key
may optionally be a KeyObject
of type secret
. If the cipher does not need an initialization vector, iv
may be null
.
When passing strings for key
or iv
, please consider caveats when using strings as inputs to cryptographic APIs.
Initialization vectors should be unpredictable and unique; ideally, they will be cryptographically random. They do not have to be secret: IVs are typically just added to ciphertext messages unencrypted. It may sound contradictory that something has to be unpredictable and unique, but does not have to be secret; remember that an attacker must not be able to predict ahead of time what a given IV will be.
crypto.createDecipher(algorithm, password[, options])
crypto.createDecipheriv()
instead.algorithm
<string>
password
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>
options
<Object> stream.transform
options
Creates and returns a Decipher
object that uses the given algorithm
and password
(key).
The options
argument controls stream behavior and is optional except when a cipher in CCM or OCB mode (e.g. 'aes-128-ccm'
) is used. In that case, the authTagLength
option is required and specifies the length of the authentication tag in bytes, see CCM mode. For chacha20-poly1305
, the authTagLength
option defaults to 16 bytes.
This function is semantically insecure for all supported ciphers and fatally flawed for ciphers in counter mode (such as CTR, GCM, or CCM).
The implementation of crypto.createDecipher()
derives keys using the OpenSSL function EVP_BytesToKey
with the digest algorithm set to MD5, one iteration, and no salt. The lack of salt allows dictionary attacks as the same password always creates the same key. The low iteration count and non-cryptographically secure hash algorithm allow passwords to be tested very rapidly.
In line with OpenSSL's recommendation to use a more modern algorithm instead of EVP_BytesToKey
it is recommended that developers derive a key and IV on their own using crypto.scrypt()
and to use crypto.createDecipheriv()
to create the Decipher
object.
crypto.createDecipheriv(algorithm, key, iv[, options])
algorithm
<string>
key
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView> | <KeyObject> | <CryptoKey>
iv
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView> | <null>
options
<Object> stream.transform
options
Creates and returns a Decipher
object that uses the given algorithm
, key
and initialization vector (iv
).
The options
argument controls stream behavior and is optional except when a cipher in CCM or OCB mode (e.g. 'aes-128-ccm'
) is used. In that case, the authTagLength
option is required and specifies the length of the authentication tag in bytes, see CCM mode. In GCM mode, the authTagLength
option is not required but can be used to restrict accepted authentication tags to those with the specified length. For chacha20-poly1305
, the authTagLength
option defaults to 16 bytes.
The algorithm
is dependent on OpenSSL, examples are 'aes192'
, etc. On recent OpenSSL releases, openssl list -cipher-algorithms
will display the available cipher algorithms.
The key
is the raw key used by the algorithm
and iv
is an initialization vector. Both arguments must be 'utf8'
encoded strings, Buffers, TypedArray
, or DataView
s. The key
may optionally be a KeyObject
of type secret
. If the cipher does not need an initialization vector, iv
may be null
.
When passing strings for key
or iv
, please consider caveats when using strings as inputs to cryptographic APIs.
Initialization vectors should be unpredictable and unique; ideally, they will be cryptographically random. They do not have to be secret: IVs are typically just added to ciphertext messages unencrypted. It may sound contradictory that something has to be unpredictable and unique, but does not have to be secret; remember that an attacker must not be able to predict ahead of time what a given IV will be.
crypto.createDiffieHellman(prime[, primeEncoding][, generator][, generatorEncoding])
prime
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>
primeEncoding
<string> The encoding of the prime
string.generator
<number> | <string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView> Default: 2
generatorEncoding
<string> The encoding of the generator
string.Creates a DiffieHellman
key exchange object using the supplied prime
and an optional specific generator
.
The generator
argument can be a number, string, or Buffer
. If generator
is not specified, the value 2
is used.
If primeEncoding
is specified, prime
is expected to be a string; otherwise a Buffer
, TypedArray
, or DataView
is expected.
If generatorEncoding
is specified, generator
is expected to be a string; otherwise a number, Buffer
, TypedArray
, or DataView
is expected.
crypto.createDiffieHellman(primeLength[, generator])
primeLength
<number>
generator
<number> Default: 2
Creates a DiffieHellman
key exchange object and generates a prime of primeLength
bits using an optional specific numeric generator
. If generator
is not specified, the value 2
is used.
crypto.createDiffieHellmanGroup(name)
name
<string>
An alias for crypto.getDiffieHellman()
crypto.createECDH(curveName)
Creates an Elliptic Curve Diffie-Hellman (ECDH
) key exchange object using a predefined curve specified by the curveName
string. Use crypto.getCurves()
to obtain a list of available curve names. On recent OpenSSL releases, openssl ecparam -list_curves
will also display the name and description of each available elliptic curve.
crypto.createHash(algorithm[, options])
algorithm
<string>
options
<Object> stream.transform
options
Creates and returns a Hash
object that can be used to generate hash digests using the given algorithm
. Optional options
argument controls stream behavior. For XOF hash functions such as 'shake256'
, the outputLength
option can be used to specify the desired output length in bytes.
The algorithm
is dependent on the available algorithms supported by the version of OpenSSL on the platform. Examples are 'sha256'
, 'sha512'
, etc. On recent releases of OpenSSL, openssl list -digest-algorithms
will display the available digest algorithms.
Example: generating the sha256 sum of a file
MJS modules
import { createReadStream, } from 'node:fs'; import { argv } from 'node:process'; const { createHash, } = await import('node:crypto'); const filename = argv[2]; const hash = createHash('sha256'); const input = createReadStream(filename); input.on('readable', () => { // Only one element is going to be produced by the // hash stream. const data = input.read(); if (data) hash.update(data); else { console.log(`${hash.digest('hex')} ${filename}`); } });
CJS modules
const { createReadStream, } = require('node:fs'); const { createHash, } = require('node:crypto'); const { argv } = require('node:process'); const filename = argv[2]; const hash = createHash('sha256'); const input = createReadStream(filename); input.on('readable', () => { // Only one element is going to be produced by the // hash stream. const data = input.read(); if (data) hash.update(data); else { console.log(`${hash.digest('hex')} ${filename}`); } });
crypto.createHmac(algorithm, key[, options])
algorithm
<string>
key
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView> | <KeyObject> | <CryptoKey>
options
<Object> stream.transform
options encoding
<string> The string encoding to use when key
is a string.Creates and returns an Hmac
object that uses the given algorithm
and key
. Optional options
argument controls stream behavior.
The algorithm
is dependent on the available algorithms supported by the version of OpenSSL on the platform. Examples are 'sha256'
, 'sha512'
, etc. On recent releases of OpenSSL, openssl list -digest-algorithms
will display the available digest algorithms.
The key
is the HMAC key used to generate the cryptographic HMAC hash. If it is a KeyObject
, its type must be secret
. If it is a string, please consider caveats when using strings as inputs to cryptographic APIs. If it was obtained from a cryptographically secure source of entropy, such as crypto.randomBytes()
or crypto.generateKey()
, its length should not exceed the block size of algorithm
(e.g., 512 bits for SHA-256).
Example: generating the sha256 HMAC of a file
MJS modules
import { createReadStream, } from 'node:fs'; import { argv } from 'node:process'; const { createHmac, } = await import('node:crypto'); const filename = argv[2]; const hmac = createHmac('sha256', 'a secret'); const input = createReadStream(filename); input.on('readable', () => { // Only one element is going to be produced by the // hash stream. const data = input.read(); if (data) hmac.update(data); else { console.log(`${hmac.digest('hex')} ${filename}`); } });
CJS modules
const { createReadStream, } = require('node:fs'); const { createHmac, } = require('node:crypto'); const { argv } = require('node:process'); const filename = argv[2]; const hmac = createHmac('sha256', 'a secret'); const input = createReadStream(filename); input.on('readable', () => { // Only one element is going to be produced by the // hash stream. const data = input.read(); if (data) hmac.update(data); else { console.log(`${hmac.digest('hex')} ${filename}`); } });
crypto.createPrivateKey(key)
key
<Object> | <string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView> key
: <string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView> | <Object> The key material, either in PEM, DER, or JWK format.format
: <string> Must be 'pem'
, 'der'
, or ''jwk'
. Default: 'pem'
.type
: <string> Must be 'pkcs1'
, 'pkcs8'
or 'sec1'
. This option is required only if the format
is 'der'
and ignored otherwise.passphrase
: <string> | <Buffer> The passphrase to use for decryption.encoding
: <string> The string encoding to use when key
is a string.Creates and returns a new key object containing a private key. If key
is a string or Buffer
, format
is assumed to be 'pem'
; otherwise, key
must be an object with the properties described above.
If the private key is encrypted, a passphrase
must be specified. The length of the passphrase is limited to 1024 bytes.
crypto.createPublicKey(key)
key
<Object> | <string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView> key
: <string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView> | <Object> The key material, either in PEM, DER, or JWK format.format
: <string> Must be 'pem'
, 'der'
, or 'jwk'
. Default: 'pem'
.type
: <string> Must be 'pkcs1'
or 'spki'
. This option is required only if the format
is 'der'
and ignored otherwise.encoding
<string> The string encoding to use when key
is a string.Creates and returns a new key object containing a public key. If key
is a string or Buffer
, format
is assumed to be 'pem'
; if key
is a KeyObject
with type 'private'
, the public key is derived from the given private key; otherwise, key
must be an object with the properties described above.
If the format is 'pem'
, the 'key'
may also be an X.509 certificate.
Because public keys can be derived from private keys, a private key may be passed instead of a public key. In that case, this function behaves as if crypto.createPrivateKey()
had been called, except that the type of the returned KeyObject
will be 'public'
and that the private key cannot be extracted from the returned KeyObject
. Similarly, if a KeyObject
with type 'private'
is given, a new KeyObject
with type 'public'
will be returned and it will be impossible to extract the private key from the returned object.
crypto.createSecretKey(key[, encoding])
key
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>
encoding
<string> The string encoding when key
is a string.Creates and returns a new key object containing a secret key for symmetric encryption or Hmac
.
crypto.createSign(algorithm[, options])
algorithm
<string>
options
<Object> stream.Writable
options
Creates and returns a Sign
object that uses the given algorithm
. Use crypto.getHashes()
to obtain the names of the available digest algorithms. Optional options
argument controls the stream.Writable
behavior.
In some cases, a Sign
instance can be created using the name of a signature algorithm, such as 'RSA-SHA256'
, instead of a digest algorithm. This will use the corresponding digest algorithm. This does not work for all signature algorithms, such as 'ecdsa-with-SHA256'
, so it is best to always use digest algorithm names.
crypto.createVerify(algorithm[, options])
algorithm
<string>
options
<Object> stream.Writable
options
Creates and returns a Verify
object that uses the given algorithm. Use crypto.getHashes()
to obtain an array of names of the available signing algorithms. Optional options
argument controls the stream.Writable
behavior.
In some cases, a Verify
instance can be created using the name of a signature algorithm, such as 'RSA-SHA256'
, instead of a digest algorithm. This will use the corresponding digest algorithm. This does not work for all signature algorithms, such as 'ecdsa-with-SHA256'
, so it is best to always use digest algorithm names.
crypto.diffieHellman(options)
options
: <Object> privateKey
: <KeyObject>
publicKey
: <KeyObject>
Computes the Diffie-Hellman secret based on a privateKey
and a publicKey
. Both keys must have the same asymmetricKeyType
, which must be one of 'dh'
(for Diffie-Hellman), 'ec'
(for ECDH), 'x448'
, or 'x25519'
(for ECDH-ES).
crypto.generateKey(type, options, callback)
type
: <string> The intended use of the generated secret key. Currently accepted values are 'hmac'
and 'aes'
.options
: <Object> length
: <number> The bit length of the key to generate. This must be a value greater than 0. type
is 'hmac'
, the minimum is 8, and the maximum length is 231-1. If the value is not a multiple of 8, the generated key will be truncated to Math.floor(length / 8)
.type
is 'aes'
, the length must be one of 128
, 192
, or 256
.callback
: <Function> err
: <Error>
key
: <KeyObject>
Asynchronously generates a new random secret key of the given length
. The type
will determine which validations will be performed on the length
.
MJS modules
const { generateKey, } = await import('node:crypto'); generateKey('hmac', { length: 512 }, (err, key) => { if (err) throw err; console.log(key.export().toString('hex')); // 46e..........620 });
CJS modules
const { generateKey, } = require('node:crypto'); generateKey('hmac', { length: 512 }, (err, key) => { if (err) throw err; console.log(key.export().toString('hex')); // 46e..........620 });
The size of a generated HMAC key should not exceed the block size of the underlying hash function. See crypto.createHmac()
for more information.
crypto.generateKeyPair(type, options, callback)
type
: <string> Must be 'rsa'
, 'rsa-pss'
, 'dsa'
, 'ec'
, 'ed25519'
, 'ed448'
, 'x25519'
, 'x448'
, or 'dh'
.options
: <Object> modulusLength
: <number> Key size in bits (RSA, DSA).publicExponent
: <number> Public exponent (RSA). Default: 0x10001
.hashAlgorithm
: <string> Name of the message digest (RSA-PSS).mgf1HashAlgorithm
: <string> Name of the message digest used by MGF1 (RSA-PSS).saltLength
: <number> Minimal salt length in bytes (RSA-PSS).divisorLength
: <number> Size of q
in bits (DSA).namedCurve
: <string> Name of the curve to use (EC).prime
: <Buffer> The prime parameter (DH).primeLength
: <number> Prime length in bits (DH).generator
: <number> Custom generator (DH). Default: 2
.groupName
: <string> Diffie-Hellman group name (DH). See crypto.getDiffieHellman()
.paramEncoding
: <string> Must be 'named'
or 'explicit'
(EC). Default: 'named'
.publicKeyEncoding
: <Object> See keyObject.export()
.privateKeyEncoding
: <Object> See keyObject.export()
.callback
: <Function> err
: <Error>
publicKey
: <string> | <Buffer> | <KeyObject>
privateKey
: <string> | <Buffer> | <KeyObject>
Generates a new asymmetric key pair of the given type
. RSA, RSA-PSS, DSA, EC, Ed25519, Ed448, X25519, X448, and DH are currently supported.
If a publicKeyEncoding
or privateKeyEncoding
was specified, this function behaves as if keyObject.export()
had been called on its result. Otherwise, the respective part of the key is returned as a KeyObject
.
It is recommended to encode public keys as 'spki'
and private keys as 'pkcs8'
with encryption for long-term storage:
MJS modules
const { generateKeyPair, } = await import('node:crypto'); generateKeyPair('rsa', { modulusLength: 4096, publicKeyEncoding: { type: 'spki', format: 'pem', }, privateKeyEncoding: { type: 'pkcs8', format: 'pem', cipher: 'aes-256-cbc', passphrase: 'top secret', }, }, (err, publicKey, privateKey) => { // Handle errors and use the generated key pair. });
CJS modules
const { generateKeyPair, } = require('node:crypto'); generateKeyPair('rsa', { modulusLength: 4096, publicKeyEncoding: { type: 'spki', format: 'pem', }, privateKeyEncoding: { type: 'pkcs8', format: 'pem', cipher: 'aes-256-cbc', passphrase: 'top secret', }, }, (err, publicKey, privateKey) => { // Handle errors and use the generated key pair. });
On completion, callback
will be called with err
set to undefined
and publicKey
/ privateKey
representing the generated key pair.
If this method is invoked as its util.promisify()
ed version, it returns a Promise
for an Object
with publicKey
and privateKey
properties.
crypto.generateKeyPairSync(type, options)
type
: <string> Must be 'rsa'
, 'rsa-pss'
, 'dsa'
, 'ec'
, 'ed25519'
, 'ed448'
, 'x25519'
, 'x448'
, or 'dh'
.options
: <Object> modulusLength
: <number> Key size in bits (RSA, DSA).publicExponent
: <number> Public exponent (RSA). Default: 0x10001
.hashAlgorithm
: <string> Name of the message digest (RSA-PSS).mgf1HashAlgorithm
: <string> Name of the message digest used by MGF1 (RSA-PSS).saltLength
: <number> Minimal salt length in bytes (RSA-PSS).divisorLength
: <number> Size of q
in bits (DSA).namedCurve
: <string> Name of the curve to use (EC).prime
: <Buffer> The prime parameter (DH).primeLength
: <number> Prime length in bits (DH).generator
: <number> Custom generator (DH). Default: 2
.groupName
: <string> Diffie-Hellman group name (DH). See crypto.getDiffieHellman()
.paramEncoding
: <string> Must be 'named'
or 'explicit'
(EC). Default: 'named'
.publicKeyEncoding
: <Object> See keyObject.export()
.privateKeyEncoding
: <Object> See keyObject.export()
.publicKey
: <string> | <Buffer> | <KeyObject>
privateKey
: <string> | <Buffer> | <KeyObject>
Generates a new asymmetric key pair of the given type
. RSA, RSA-PSS, DSA, EC, Ed25519, Ed448, X25519, X448, and DH are currently supported.
If a publicKeyEncoding
or privateKeyEncoding
was specified, this function behaves as if keyObject.export()
had been called on its result. Otherwise, the respective part of the key is returned as a KeyObject
.
When encoding public keys, it is recommended to use 'spki'
. When encoding private keys, it is recommended to use 'pkcs8'
with a strong passphrase, and to keep the passphrase confidential.
MJS modules
const { generateKeyPairSync, } = await import('node:crypto'); const { publicKey, privateKey, } = generateKeyPairSync('rsa', { modulusLength: 4096, publicKeyEncoding: { type: 'spki', format: 'pem', }, privateKeyEncoding: { type: 'pkcs8', format: 'pem', cipher: 'aes-256-cbc', passphrase: 'top secret', }, });
CJS modules
const { generateKeyPairSync, } = require('node:crypto'); const { publicKey, privateKey, } = generateKeyPairSync('rsa', { modulusLength: 4096, publicKeyEncoding: { type: 'spki', format: 'pem', }, privateKeyEncoding: { type: 'pkcs8', format: 'pem', cipher: 'aes-256-cbc', passphrase: 'top secret', }, });
The return value { publicKey, privateKey }
represents the generated key pair. When PEM encoding was selected, the respective key will be a string, otherwise it will be a buffer containing the data encoded as DER.
crypto.generateKeySync(type, options)
type
: <string> The intended use of the generated secret key. Currently accepted values are 'hmac'
and 'aes'
.options
: <Object> length
: <number> The bit length of the key to generate. type
is 'hmac'
, the minimum is 8, and the maximum length is 231-1. If the value is not a multiple of 8, the generated key will be truncated to Math.floor(length / 8)
.type
is 'aes'
, the length must be one of 128
, 192
, or 256
.Synchronously generates a new random secret key of the given length
. The type
will determine which validations will be performed on the length
.
MJS modules
const { generateKeySync, } = await import('node:crypto'); const key = generateKeySync('hmac', { length: 512 }); console.log(key.export().toString('hex')); // e89..........41e
CJS modules
const { generateKeySync, } = require('node:crypto'); const key = generateKeySync('hmac', { length: 512 }); console.log(key.export().toString('hex')); // e89..........41e
The size of a generated HMAC key should not exceed the block size of the underlying hash function. See crypto.createHmac()
for more information.
crypto.generatePrime(size[, options[, callback]])
size
<number> The size (in bits) of the prime to generate.options
<Object> add
<ArrayBuffer> | <SharedArrayBuffer> | <TypedArray> | <Buffer> | <DataView> | <bigint>
rem
<ArrayBuffer> | <SharedArrayBuffer> | <TypedArray> | <Buffer> | <DataView> | <bigint>
safe
<boolean> Default: false
.bigint
<boolean> When true
, the generated prime is returned as a bigint
.callback
<Function> err
<Error>
prime
<ArrayBuffer> | <bigint>
Generates a pseudorandom prime of size
bits.
If options.safe
is true
, the prime will be a safe prime -- that is, (prime - 1) / 2
will also be a prime.
The options.add
and options.rem
parameters can be used to enforce additional requirements, e.g., for Diffie-Hellman:
options.add
and options.rem
are both set, the prime will satisfy the condition that prime % add = rem
.options.add
is set and options.safe
is not true
, the prime will satisfy the condition that prime % add = 1
.options.add
is set and options.safe
is set to true
, the prime will instead satisfy the condition that prime % add = 3
. This is necessary because prime % add = 1
for options.add > 2
would contradict the condition enforced by options.safe
.options.rem
is ignored if options.add
is not given.Both options.add
and options.rem
must be encoded as big-endian sequences if given as an ArrayBuffer
, SharedArrayBuffer
, TypedArray
, Buffer
, or DataView
.
By default, the prime is encoded as a big-endian sequence of octets in an <ArrayBuffer>. If the bigint
option is true
, then a <bigint> is provided.
crypto.generatePrimeSync(size[, options])
size
<number> The size (in bits) of the prime to generate.options
<Object> add
<ArrayBuffer> | <SharedArrayBuffer> | <TypedArray> | <Buffer> | <DataView> | <bigint>
rem
<ArrayBuffer> | <SharedArrayBuffer> | <TypedArray> | <Buffer> | <DataView> | <bigint>
safe
<boolean> Default: false
.bigint
<boolean> When true
, the generated prime is returned as a bigint
.Generates a pseudorandom prime of size
bits.
If options.safe
is true
, the prime will be a safe prime -- that is, (prime - 1) / 2
will also be a prime.
The options.add
and options.rem
parameters can be used to enforce additional requirements, e.g., for Diffie-Hellman:
options.add
and options.rem
are both set, the prime will satisfy the condition that prime % add = rem
.options.add
is set and options.safe
is not true
, the prime will satisfy the condition that prime % add = 1
.options.add
is set and options.safe
is set to true
, the prime will instead satisfy the condition that prime % add = 3
. This is necessary because prime % add = 1
for options.add > 2
would contradict the condition enforced by options.safe
.options.rem
is ignored if options.add
is not given.Both options.add
and options.rem
must be encoded as big-endian sequences if given as an ArrayBuffer
, SharedArrayBuffer
, TypedArray
, Buffer
, or DataView
.
By default, the prime is encoded as a big-endian sequence of octets in an <ArrayBuffer>. If the bigint
option is true
, then a <bigint> is provided.
crypto.getCipherInfo(nameOrNid[, options])
nameOrNid
: <string> | <number> The name or nid of the cipher to query.options
: <Object> name
<string> The name of the ciphernid
<number> The nid of the cipherblockSize
<number> The block size of the cipher in bytes. This property is omitted when mode
is 'stream'
.ivLength
<number> The expected or default initialization vector length in bytes. This property is omitted if the cipher does not use an initialization vector.keyLength
<number> The expected or default key length in bytes.mode
<string> The cipher mode. One of 'cbc'
, 'ccm'
, 'cfb'
, 'ctr'
, 'ecb'
, 'gcm'
, 'ocb'
, 'ofb'
, 'stream'
, 'wrap'
, 'xts'
.Returns information about a given cipher.
Some ciphers accept variable length keys and initialization vectors. By default, the crypto.getCipherInfo()
method will return the default values for these ciphers. To test if a given key length or iv length is acceptable for given cipher, use the keyLength
and ivLength
options. If the given values are unacceptable, undefined
will be returned.
crypto.getCiphers()
MJS modules
const { getCiphers, } = await import('node:crypto'); console.log(getCiphers()); // ['aes-128-cbc', 'aes-128-ccm', ...]
CJS modules
const { getCiphers, } = require('node:crypto'); console.log(getCiphers()); // ['aes-128-cbc', 'aes-128-ccm', ...]
crypto.getCurves()
MJS modules
const { getCurves, } = await import('node:crypto'); console.log(getCurves()); // ['Oakley-EC2N-3', 'Oakley-EC2N-4', ...]
CJS modules
const { getCurves, } = require('node:crypto'); console.log(getCurves()); // ['Oakley-EC2N-3', 'Oakley-EC2N-4', ...]
crypto.getDiffieHellman(groupName)
groupName
<string>
Creates a predefined DiffieHellmanGroup
key exchange object. The supported groups are listed in the documentation for DiffieHellmanGroup
.
The returned object mimics the interface of objects created by crypto.createDiffieHellman()
, but will not allow changing the keys (with diffieHellman.setPublicKey()
, for example). The advantage of using this method is that the parties do not have to generate nor exchange a group modulus beforehand, saving both processor and communication time.
Example (obtaining a shared secret):
MJS modules
const { getDiffieHellman, } = await import('node:crypto'); const alice = getDiffieHellman('modp14'); const bob = getDiffieHellman('modp14'); alice.generateKeys(); bob.generateKeys(); const aliceSecret = alice.computeSecret(bob.getPublicKey(), null, 'hex'); const bobSecret = bob.computeSecret(alice.getPublicKey(), null, 'hex'); /* aliceSecret and bobSecret should be the same */ console.log(aliceSecret === bobSecret);
CJS modules
const { getDiffieHellman, } = require('node:crypto'); const alice = getDiffieHellman('modp14'); const bob = getDiffieHellman('modp14'); alice.generateKeys(); bob.generateKeys(); const aliceSecret = alice.computeSecret(bob.getPublicKey(), null, 'hex'); const bobSecret = bob.computeSecret(alice.getPublicKey(), null, 'hex'); /* aliceSecret and bobSecret should be the same */ console.log(aliceSecret === bobSecret);
crypto.getFips()
1
if and only if a FIPS compliant crypto provider is currently in use, 0
otherwise. A future semver-major release may change the return type of this API to a <boolean>.crypto.getHashes()
'RSA-SHA256'
. Hash algorithms are also called "digest" algorithms.MJS modules
const { getHashes, } = await import('node:crypto'); console.log(getHashes()); // ['DSA', 'DSA-SHA', 'DSA-SHA1', ...]
CJS modules
const { getHashes, } = require('node:crypto'); console.log(getHashes()); // ['DSA', 'DSA-SHA', 'DSA-SHA1', ...]
crypto.getRandomValues(typedArray)
typedArray
<Buffer> | <TypedArray> | <DataView> | <ArrayBuffer>
typedArray
.A convenient alias for crypto.webcrypto.getRandomValues()
. This implementation is not compliant with the Web Crypto spec, to write web-compatible code use crypto.webcrypto.getRandomValues()
instead.
crypto.hkdf(digest, ikm, salt, info, keylen, callback)
digest
<string> The digest algorithm to use.ikm
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView> | <KeyObject> The input keying material. Must be provided but can be zero-length.salt
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView> The salt value. Must be provided but can be zero-length.info
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView> Additional info value. Must be provided but can be zero-length, and cannot be more than 1024 bytes.keylen
<number> The length of the key to generate. Must be greater than 0. The maximum allowable value is 255
times the number of bytes produced by the selected digest function (e.g. sha512
generates 64-byte hashes, making the maximum HKDF output 16320 bytes).callback
<Function> err
<Error>
derivedKey
<ArrayBuffer>
HKDF is a simple key derivation function defined in RFC 5869. The given ikm
, salt
and info
are used with the digest
to derive a key of keylen
bytes.
The supplied callback
function is called with two arguments: err
and derivedKey
. If an errors occurs while deriving the key, err
will be set; otherwise err
will be null
. The successfully generated derivedKey
will be passed to the callback as an <ArrayBuffer>. An error will be thrown if any of the input arguments specify invalid values or types.
MJS modules
import { Buffer } from 'node:buffer'; const { hkdf, } = await import('node:crypto'); hkdf('sha512', 'key', 'salt', 'info', 64, (err, derivedKey) => { if (err) throw err; console.log(Buffer.from(derivedKey).toString('hex')); // '24156e2...5391653' });
CJS modules
const { hkdf, } = require('node:crypto'); const { Buffer } = require('node:buffer'); hkdf('sha512', 'key', 'salt', 'info', 64, (err, derivedKey) => { if (err) throw err; console.log(Buffer.from(derivedKey).toString('hex')); // '24156e2...5391653' });
crypto.hkdfSync(digest, ikm, salt, info, keylen)
digest
<string> The digest algorithm to use.ikm
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView> | <KeyObject> The input keying material. Must be provided but can be zero-length.salt
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView> The salt value. Must be provided but can be zero-length.info
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView> Additional info value. Must be provided but can be zero-length, and cannot be more than 1024 bytes.keylen
<number> The length of the key to generate. Must be greater than 0. The maximum allowable value is 255
times the number of bytes produced by the selected digest function (e.g. sha512
generates 64-byte hashes, making the maximum HKDF output 16320 bytes).Provides a synchronous HKDF key derivation function as defined in RFC 5869. The given ikm
, salt
and info
are used with the digest
to derive a key of keylen
bytes.
The successfully generated derivedKey
will be returned as an <ArrayBuffer>.
An error will be thrown if any of the input arguments specify invalid values or types, or if the derived key cannot be generated.
MJS modules
import { Buffer } from 'node:buffer'; const { hkdfSync, } = await import('node:crypto'); const derivedKey = hkdfSync('sha512', 'key', 'salt', 'info', 64); console.log(Buffer.from(derivedKey).toString('hex')); // '24156e2...5391653'
CJS modules
const { hkdfSync, } = require('node:crypto'); const { Buffer } = require('node:buffer'); const derivedKey = hkdfSync('sha512', 'key', 'salt', 'info', 64); console.log(Buffer.from(derivedKey).toString('hex')); // '24156e2...5391653'
crypto.pbkdf2(password, salt, iterations, keylen, digest, callback)
password
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>
salt
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>
iterations
<number>
keylen
<number>
digest
<string>
callback
<Function> Provides an asynchronous Password-Based Key Derivation Function 2 (PBKDF2) implementation. A selected HMAC digest algorithm specified by digest
is applied to derive a key of the requested byte length (keylen
) from the password
, salt
and iterations
.
The supplied callback
function is called with two arguments: err
and derivedKey
. If an error occurs while deriving the key, err
will be set; otherwise err
will be null
. By default, the successfully generated derivedKey
will be passed to the callback as a Buffer
. An error will be thrown if any of the input arguments specify invalid values or types.
The iterations
argument must be a number set as high as possible. The higher the number of iterations, the more secure the derived key will be, but will take a longer amount of time to complete.
The salt
should be as unique as possible. It is recommended that a salt is random and at least 16 bytes long. See NIST SP 800-132 for details.
When passing strings for password
or salt
, please consider caveats when using strings as inputs to cryptographic APIs.
MJS modules
const { pbkdf2, } = await import('node:crypto'); pbkdf2('secret', 'salt', 100000, 64, 'sha512', (err, derivedKey) => { if (err) throw err; console.log(derivedKey.toString('hex')); // '3745e48...08d59ae' });
CJS modules
const { pbkdf2, } = require('node:crypto'); pbkdf2('secret', 'salt', 100000, 64, 'sha512', (err, derivedKey) => { if (err) throw err; console.log(derivedKey.toString('hex')); // '3745e48...08d59ae' });
An array of supported digest functions can be retrieved using crypto.getHashes()
.
This API uses libuv's threadpool, which can have surprising and negative performance implications for some applications; see the UV_THREADPOOL_SIZE
documentation for more information.
crypto.pbkdf2Sync(password, salt, iterations, keylen, digest)
password
<string> | <Buffer> | <TypedArray> | <DataView>
salt
<string> | <Buffer> | <TypedArray> | <DataView>
iterations
<number>
keylen
<number>
digest
<string>
Provides a synchronous Password-Based Key Derivation Function 2 (PBKDF2) implementation. A selected HMAC digest algorithm specified by digest
is applied to derive a key of the requested byte length (keylen
) from the password
, salt
and iterations
.
If an error occurs an Error
will be thrown, otherwise the derived key will be returned as a Buffer
.
The iterations
argument must be a number set as high as possible. The higher the number of iterations, the more secure the derived key will be, but will take a longer amount of time to complete.
The salt
should be as unique as possible. It is recommended that a salt is random and at least 16 bytes long. See NIST SP 800-132 for details.
When passing strings for password
or salt
, please consider caveats when using strings as inputs to cryptographic APIs.
MJS modules
const { pbkdf2Sync, } = await import('node:crypto'); const key = pbkdf2Sync('secret', 'salt', 100000, 64, 'sha512'); console.log(key.toString('hex')); // '3745e48...08d59ae'
CJS modules
const { pbkdf2Sync, } = require('node:crypto'); const key = pbkdf2Sync('secret', 'salt', 100000, 64, 'sha512'); console.log(key.toString('hex')); // '3745e48...08d59ae'
An array of supported digest functions can be retrieved using crypto.getHashes()
.
crypto.privateDecrypt(privateKey, buffer)
privateKey
<Object> | <string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView> | <KeyObject> | <CryptoKey> oaepHash
<string> The hash function to use for OAEP padding and MGF1. Default: 'sha1'
oaepLabel
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView> The label to use for OAEP padding. If not specified, no label is used.padding
<crypto.constants> An optional padding value defined in crypto.constants
, which may be: crypto.constants.RSA_NO_PADDING
, crypto.constants.RSA_PKCS1_PADDING
, or crypto.constants.RSA_PKCS1_OAEP_PADDING
.buffer
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>
Buffer
with the decrypted content.Decrypts buffer
with privateKey
. buffer
was previously encrypted using the corresponding public key, for example using crypto.publicEncrypt()
.
If privateKey
is not a KeyObject
, this function behaves as if privateKey
had been passed to crypto.createPrivateKey()
. If it is an object, the padding
property can be passed. Otherwise, this function uses RSA_PKCS1_OAEP_PADDING
.
crypto.privateEncrypt(privateKey, buffer)
privateKey
<Object> | <string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView> | <KeyObject> | <CryptoKey> key
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView> | <KeyObject> | <CryptoKey> A PEM encoded private key.passphrase
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView> An optional passphrase for the private key.padding
<crypto.constants> An optional padding value defined in crypto.constants
, which may be: crypto.constants.RSA_NO_PADDING
or crypto.constants.RSA_PKCS1_PADDING
.encoding
<string> The string encoding to use when buffer
, key
, or passphrase
are strings.buffer
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>
Buffer
with the encrypted content.Encrypts buffer
with privateKey
. The returned data can be decrypted using the corresponding public key, for example using crypto.publicDecrypt()
.
If privateKey
is not a KeyObject
, this function behaves as if privateKey
had been passed to crypto.createPrivateKey()
. If it is an object, the padding
property can be passed. Otherwise, this function uses RSA_PKCS1_PADDING
.
crypto.publicDecrypt(key, buffer)
key
<Object> | <string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView> | <KeyObject> | <CryptoKey> passphrase
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView> An optional passphrase for the private key.padding
<crypto.constants> An optional padding value defined in crypto.constants
, which may be: crypto.constants.RSA_NO_PADDING
or crypto.constants.RSA_PKCS1_PADDING
.encoding
<string> The string encoding to use when buffer
, key
, or passphrase
are strings.buffer
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>
Buffer
with the decrypted content.Decrypts buffer
with key
.buffer
was previously encrypted using the corresponding private key, for example using crypto.privateEncrypt()
.
If key
is not a KeyObject
, this function behaves as if key
had been passed to crypto.createPublicKey()
. If it is an object, the padding
property can be passed. Otherwise, this function uses RSA_PKCS1_PADDING
.
Because RSA public keys can be derived from private keys, a private key may be passed instead of a public key.
crypto.publicEncrypt(key, buffer)
key
<Object> | <string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView> | <KeyObject> | <CryptoKey> key
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView> | <KeyObject> | <CryptoKey> A PEM encoded public or private key, <KeyObject>, or <CryptoKey>.oaepHash
<string> The hash function to use for OAEP padding and MGF1. Default: 'sha1'
oaepLabel
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView> The label to use for OAEP padding. If not specified, no label is used.passphrase
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView> An optional passphrase for the private key.padding
<crypto.constants> An optional padding value defined in crypto.constants
, which may be: crypto.constants.RSA_NO_PADDING
, crypto.constants.RSA_PKCS1_PADDING
, or crypto.constants.RSA_PKCS1_OAEP_PADDING
.encoding
<string> The string encoding to use when buffer
, key
, oaepLabel
, or passphrase
are strings.buffer
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>
Buffer
with the encrypted content.Encrypts the content of buffer
with key
and returns a new Buffer
with encrypted content. The returned data can be decrypted using the corresponding private key, for example using crypto.privateDecrypt()
.
If key
is not a KeyObject
, this function behaves as if key
had been passed to crypto.createPublicKey()
. If it is an object, the padding
property can be passed. Otherwise, this function uses RSA_PKCS1_OAEP_PADDING
.
Because RSA public keys can be derived from private keys, a private key may be passed instead of a public key.
crypto.randomBytes(size[, callback])
size
<number> The number of bytes to generate. The size
must not be larger than 2**31 - 1
.callback
<Function> callback
function is not provided.Generates cryptographically strong pseudorandom data. The size
argument is a number indicating the number of bytes to generate.
If a callback
function is provided, the bytes are generated asynchronously and the callback
function is invoked with two arguments: err
and buf
. If an error occurs, err
will be an Error
object; otherwise it is null
. The buf
argument is a Buffer
containing the generated bytes.
MJS modules
// Asynchronous const { randomBytes, } = await import('node:crypto'); randomBytes(256, (err, buf) => { if (err) throw err; console.log(`${buf.length} bytes of random data: ${buf.toString('hex')}`); });
CJS modules
// Asynchronous const { randomBytes, } = require('node:crypto'); randomBytes(256, (err, buf) => { if (err) throw err; console.log(`${buf.length} bytes of random data: ${buf.toString('hex')}`); });
If the callback
function is not provided, the random bytes are generated synchronously and returned as a Buffer
. An error will be thrown if there is a problem generating the bytes.
MJS modules
// Synchronous const { randomBytes, } = await import('node:crypto'); const buf = randomBytes(256); console.log( `${buf.length} bytes of random data: ${buf.toString('hex')}`);
CJS modules
// Synchronous const { randomBytes, } = require('node:crypto'); const buf = randomBytes(256); console.log( `${buf.length} bytes of random data: ${buf.toString('hex')}`);
The crypto.randomBytes()
method will not complete until there is sufficient entropy available. This should normally never take longer than a few milliseconds. The only time when generating the random bytes may conceivably block for a longer period of time is right after boot, when the whole system is still low on entropy.
This API uses libuv's threadpool, which can have surprising and negative performance implications for some applications; see the UV_THREADPOOL_SIZE
documentation for more information.
The asynchronous version of crypto.randomBytes()
is carried out in a single threadpool request. To minimize threadpool task length variation, partition large randomBytes
requests when doing so as part of fulfilling a client request.
crypto.randomFillSync(buffer[, offset][, size])
buffer
<ArrayBuffer> | <Buffer> | <TypedArray> | <DataView> Must be supplied. The size of the provided buffer
must not be larger than 2**31 - 1
.offset
<number> Default: 0
size
<number> Default: buffer.length - offset
. The size
must not be larger than 2**31 - 1
.buffer
argument.Synchronous version of crypto.randomFill()
.
MJS modules
import { Buffer } from 'node:buffer'; const { randomFillSync } = await import('node:crypto'); const buf = Buffer.alloc(10); console.log(randomFillSync(buf).toString('hex')); randomFillSync(buf, 5); console.log(buf.toString('hex')); // The above is equivalent to the following: randomFillSync(buf, 5, 5); console.log(buf.toString('hex'));
CJS modules
const { randomFillSync } = require('node:crypto'); const { Buffer } = require('node:buffer'); const buf = Buffer.alloc(10); console.log(randomFillSync(buf).toString('hex')); randomFillSync(buf, 5); console.log(buf.toString('hex')); // The above is equivalent to the following: randomFillSync(buf, 5, 5); console.log(buf.toString('hex'));
Any ArrayBuffer
, TypedArray
or DataView
instance may be passed as buffer
.
MJS modules
import { Buffer } from 'node:buffer'; const { randomFillSync } = await import('node:crypto'); const a = new Uint32Array(10); console.log(Buffer.from(randomFillSync(a).buffer, a.byteOffset, a.byteLength).toString('hex')); const b = new DataView(new ArrayBuffer(10)); console.log(Buffer.from(randomFillSync(b).buffer, b.byteOffset, b.byteLength).toString('hex')); const c = new ArrayBuffer(10); console.log(Buffer.from(randomFillSync(c)).toString('hex'));
CJS modules
const { randomFillSync } = require('node:crypto'); const { Buffer } = require('node:buffer'); const a = new Uint32Array(10); console.log(Buffer.from(randomFillSync(a).buffer, a.byteOffset, a.byteLength).toString('hex')); const b = new DataView(new ArrayBuffer(10)); console.log(Buffer.from(randomFillSync(b).buffer, b.byteOffset, b.byteLength).toString('hex')); const c = new ArrayBuffer(10); console.log(Buffer.from(randomFillSync(c)).toString('hex'));
crypto.randomFill(buffer[, offset][, size], callback)
buffer
<ArrayBuffer> | <Buffer> | <TypedArray> | <DataView> Must be supplied. The size of the provided buffer
must not be larger than 2**31 - 1
.offset
<number> Default: 0
size
<number> Default: buffer.length - offset
. The size
must not be larger than 2**31 - 1
.callback
<Function> function(err, buf) {}
.This function is similar to crypto.randomBytes()
but requires the first argument to be a Buffer
that will be filled. It also requires that a callback is passed in.
If the callback
function is not provided, an error will be thrown.
MJS modules
import { Buffer } from 'node:buffer'; const { randomFill } = await import('node:crypto'); const buf = Buffer.alloc(10); randomFill(buf, (err, buf) => { if (err) throw err; console.log(buf.toString('hex')); }); randomFill(buf, 5, (err, buf) => { if (err) throw err; console.log(buf.toString('hex')); }); // The above is equivalent to the following: randomFill(buf, 5, 5, (err, buf) => { if (err) throw err; console.log(buf.toString('hex')); });
CJS modules
const { randomFill } = require('node:crypto'); const { Buffer } = require('node:buffer'); const buf = Buffer.alloc(10); randomFill(buf, (err, buf) => { if (err) throw err; console.log(buf.toString('hex')); }); randomFill(buf, 5, (err, buf) => { if (err) throw err; console.log(buf.toString('hex')); }); // The above is equivalent to the following: randomFill(buf, 5, 5, (err, buf) => { if (err) throw err; console.log(buf.toString('hex')); });
Any ArrayBuffer
, TypedArray
, or DataView
instance may be passed as buffer
.
While this includes instances of Float32Array
and Float64Array
, this function should not be used to generate random floating-point numbers. The result may contain +Infinity
, -Infinity
, and NaN
, and even if the array contains finite numbers only, they are not drawn from a uniform random distribution and have no meaningful lower or upper bounds.
MJS modules
import { Buffer } from 'node:buffer'; const { randomFill } = await import('node:crypto'); const a = new Uint32Array(10); randomFill(a, (err, buf) => { if (err) throw err; console.log(Buffer.from(buf.buffer, buf.byteOffset, buf.byteLength) .toString('hex')); }); const b = new DataView(new ArrayBuffer(10)); randomFill(b, (err, buf) => { if (err) throw err; console.log(Buffer.from(buf.buffer, buf.byteOffset, buf.byteLength) .toString('hex')); }); const c = new ArrayBuffer(10); randomFill(c, (err, buf) => { if (err) throw err; console.log(Buffer.from(buf).toString('hex')); });
CJS modules
const { randomFill } = require('node:crypto'); const { Buffer } = require('node:buffer'); const a = new Uint32Array(10); randomFill(a, (err, buf) => { if (err) throw err; console.log(Buffer.from(buf.buffer, buf.byteOffset, buf.byteLength) .toString('hex')); }); const b = new DataView(new ArrayBuffer(10)); randomFill(b, (err, buf) => { if (err) throw err; console.log(Buffer.from(buf.buffer, buf.byteOffset, buf.byteLength) .toString('hex')); }); const c = new ArrayBuffer(10); randomFill(c, (err, buf) => { if (err) throw err; console.log(Buffer.from(buf).toString('hex')); });
This API uses libuv's threadpool, which can have surprising and negative performance implications for some applications; see the UV_THREADPOOL_SIZE
documentation for more information.
The asynchronous version of crypto.randomFill()
is carried out in a single threadpool request. To minimize threadpool task length variation, partition large randomFill
requests when doing so as part of fulfilling a client request.
crypto.randomInt([min, ]max[, callback])
min
<integer> Start of random range (inclusive). Default: 0
.max
<integer> End of random range (exclusive).callback
<Function> function(err, n) {}
.Return a random integer n
such that min <= n < max
. This implementation avoids modulo bias.
The range (max - min
) must be less than 248. min
and max
must be safe integers.
If the callback
function is not provided, the random integer is generated synchronously.
MJS modules
// Asynchronous const { randomInt, } = await import('node:crypto'); randomInt(3, (err, n) => { if (err) throw err; console.log(`Random number chosen from (0, 1, 2): ${n}`); });
CJS modules
// Asynchronous const { randomInt, } = require('node:crypto'); randomInt(3, (err, n) => { if (err) throw err; console.log(`Random number chosen from (0, 1, 2): ${n}`); });
MJS modules
// Synchronous const { randomInt, } = await import('node:crypto'); const n = randomInt(3); console.log(`Random number chosen from (0, 1, 2): ${n}`);
CJS modules
// Synchronous const { randomInt, } = require('node:crypto'); const n = randomInt(3); console.log(`Random number chosen from (0, 1, 2): ${n}`);
MJS modules
// With `min` argument const { randomInt, } = await import('node:crypto'); const n = randomInt(1, 7); console.log(`The dice rolled: ${n}`);
CJS modules
// With `min` argument const { randomInt, } = require('node:crypto'); const n = randomInt(1, 7); console.log(`The dice rolled: ${n}`);
crypto.randomUUID([options])
options
<Object> disableEntropyCache
<boolean> By default, to improve performance, Node.js generates and caches enough random data to generate up to 128 random UUIDs. To generate a UUID without using the cache, set disableEntropyCache
to true
. Default: false
.Generates a random RFC 4122 version 4 UUID. The UUID is generated using a cryptographic pseudorandom number generator.
crypto.scrypt(password, salt, keylen[, options], callback)
password
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>
salt
<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>
keylen
<number>
options
<Object> cost
<number> CPU/memory cost parameter. Must be a power of two greater than one. Default: 16384
.blockSize
<number> Block size parameter. Default: 8
.parallelization
<number> Parallelization parameter. Default: 1
.N
<number> Alias for cost
. Only one of both may be specified.r
<number> Alias for blockSize
. Only one of both may be specified.p
<number> Alias for parallelization
. Only one of both may be specified.maxmem
<number> Memory upper bound. It is an error when (approximately) 128 * N * r > maxmem
. Default: 32 * 1024 * 1024
.callback
<Function> Provides an asynchronous scrypt implementation. Scrypt is a password-based key derivation function that is designed to be expensive computationally and memory-wise in order to make brute-force attacks unrewarding.
The salt
should be as unique as possible. It is recommended that a salt is random and at least 16 bytes long. See NIST SP 800-132 for details.
When passing strings for password
or salt
, please consider caveats when using strings as inputs to cryptographic APIs.
The callback
function is called with two arguments: err
and derivedKey
. err
is an exception object when key derivation fails, otherwise err
is null
. derivedKey
is passed to the callback as a Buffer
.
An exception is thrown when any of the input arguments specify invalid values or types.
MJS modules
const { scrypt, } = await import('node:crypto'); // Using the factory defaults. scrypt('password', 'salt', 64, (err, derivedKey) => { if (err) throw err; console.log(derivedKey.toString('hex')); // '3745e48...08d59ae' }); // Using a custom N parameter. Must be a power of two. scrypt('password', 'salt', 64, { N: 1024 }, (err, derivedKey) => { if (err) throw err; console.log(derivedKey.toString('hex')); // '3745e48...aa39b34' });
CJS modules
const { scrypt, } = require('node:crypto'); // Using the factory defaults. scrypt('password', 'salt', 64, (err, derivedKey) => { if (err) throw err; console.log(derivedKey.toString('hex')); // '3745e48...08d59ae' }); // Using a custom N parameter. Must be a power of two. scrypt('password', 'salt', 64, { N: 1024 }, (err, derivedKey) => { if (err) throw err; console.log(derivedKey.toString('hex')); // '3745e48...aa39b34' });
crypto.scryptSync(password, salt, keylen[, options])
password
<string> | <Buffer> | <TypedArray> | <DataView>
salt
<string> | <Buffer> | <TypedArray> | <DataView>
keylen
<number>
options
<Object> cost
<number> CPU/memory cost parameter. Must be a power of two greater than one. Default: 16384
.blockSize
<number> Block size parameter. Default: 8
.parallelization
<number> Parallelization parameter. Default: 1
.N
<number> Alias for cost
. Only one of both may be specified.r
<number> Alias for blockSize
. Only one of both may be specified.p
<number> Alias for parallelization
. Only one of both may be specified.maxmem
<number> Memory upper bound. It is an error when (approximately) 128 * N * r > maxmem
. Default: 32 * 1024 * 1024
.Provides a synchronous scrypt implementation. Scrypt is a password-based key derivation function that is designed to be expensive computationally and memory-wise in order to make brute-force attacks unrewarding.
The salt
should be as unique as possible. It is recommended that a salt is random and at least 16 bytes long. See NIST SP 800-132 for details.
When passing strings for password
or salt
, please consider caveats when using strings as inputs to cryptographic APIs.
An exception is thrown when key derivation fails, otherwise the derived key is returned as a Buffer
.
An exception is thrown when any of the input arguments specify invalid values or types.
MJS modules
const { scryptSync, } = await import('node:crypto'); // Using the factory defaults. const key1 = scryptSync('password', 'salt', 64); console.log(key1.toString('hex')); // '3745e48...08d59ae' // Using a custom N parameter. Must be a power of two. const key2 = scryptSync('password', 'salt', 64, { N: 1024 }); console.log(key2.toString('hex')); // '3745e48...aa39b34'
CJS modules
const { scryptSync, } = require('node:crypto'); // Using the factory defaults. const key1 = scryptSync('password', 'salt', 64); console.log(key1.toString('hex')); // '3745e48...08d59ae' // Using a custom N parameter. Must be a power of two. const key2 = scryptSync('password', 'salt', 64, { N: 1024 }); console.log(key2.toString('hex')); // '3745e48...aa39b34'
crypto.secureHeapUsed()
total
<number> The total allocated secure heap size as specified using the --secure-heap=n
command-line flag.min
<number> The minimum allocation from the secure heap as specified using the --secure-heap-min
command-line flag.used
<number> The total number of bytes currently allocated from the secure heap.utilization
<number> The calculated ratio of used
to total
allocated bytes.crypto.setEngine(engine[, flags])
engine
<string>
flags
<crypto.constants> Default: crypto.constants.ENGINE_METHOD_ALL
Load and set the engine
for some or all OpenSSL functions (selected by flags).
engine
could be either an id or a path to the engine's shared library.
The optional flags
argument uses ENGINE_METHOD_ALL
by default. The flags
is a bit field taking one of or a mix of the following flags (defined in crypto.constants
):
crypto.constants.ENGINE_METHOD_RSA
crypto.constants.ENGINE_METHOD_DSA
crypto.constants.ENGINE_METHOD_DH
crypto.constants.ENGINE_METHOD_RAND
crypto.constants.ENGINE_METHOD_EC
crypto.constants.ENGINE_METHOD_CIPHERS
crypto.constants.ENGINE_METHOD_DIGESTS
crypto.constants.ENGINE_METHOD_PKEY_METHS
crypto.constants.ENGINE_METHOD_PKEY_ASN1_METHS
crypto.constants.ENGINE_METHOD_ALL
crypto.constants.ENGINE_METHOD_NONE
crypto.setFips(bool)
bool
<boolean> true
to enable FIPS mode.Enables the FIPS compliant crypto provider in a FIPS-enabled Node.js build. Throws an error if FIPS mode is not available.
crypto.sign(algorithm, data, key[, callback])
algorithm
<string> | <null> | <undefined>
data
<ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>
key
<Object> | <string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView> | <KeyObject> | <CryptoKey>
callback
<Function> callback
function is not provided.Calculates and returns the signature for data
using the given private key and algorithm. If algorithm
is null
or undefined
, then the algorithm is dependent upon the key type (especially Ed25519 and Ed448).
If key
is not a KeyObject
, this function behaves as if key
had been passed to crypto.createPrivateKey()
. If it is an object, the following additional properties can be passed:
dsaEncoding
<string> For DSA and ECDSA, this option specifies the format of the generated signature. It can be one of the following:
'der'
(default): DER-encoded ASN.1 signature structure encoding (r, s)
.'ieee-p1363'
: Signature format r || s
as proposed in IEEE-P1363.padding
<integer> Optional padding value for RSA, one of the following:
crypto.constants.RSA_PKCS1_PADDING
(default)crypto.constants.RSA_PKCS1_PSS_PADDING
RSA_PKCS1_PSS_PADDING
will use MGF1 with the same hash function used to sign the message as specified in section 3.1 of RFC 4055.
saltLength
<integer> Salt length for when padding is RSA_PKCS1_PSS_PADDING
. The special value crypto.constants.RSA_PSS_SALTLEN_DIGEST
sets the salt length to the digest size, crypto.constants.RSA_PSS_SALTLEN_MAX_SIGN
(default) sets it to the maximum permissible value.
If the callback
function is provided this function uses libuv's threadpool.
crypto.subtle
A convenient alias for crypto.webcrypto.subtle
.
crypto.timingSafeEqual(a, b)
a
<ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>
b
<ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>
This function compares the underlying bytes that represent the given ArrayBuffer
, TypedArray
, or DataView
instances using a constant-time algorithm.
This function does not leak timing information that would allow an attacker to guess one of the values. This is suitable for comparing HMAC digests or secret values like authentication cookies or capability urls.
a
and b
must both be Buffer
s, TypedArray
s, or DataView
s, and they must have the same byte length. An error is thrown if a
and b
have different byte lengths.
If at least one of a
and b
is a TypedArray
with more than one byte per entry, such as Uint16Array
, the result will be computed using the platform byte order.
When both of the inputs are Float32Array
s or Float64Array
s, this function might return unexpected results due to IEEE 754 encoding of floating-point numbers. In particular, neither x === y
nor Object.is(x, y)
implies that the byte representations of two floating-point numbers x
and y
are equal.
Use of crypto.timingSafeEqual
does not guarantee that the surrounding code is timing-safe. Care should be taken to ensure that the surrounding code does not introduce timing vulnerabilities.
crypto.verify(algorithm, data, key, signature[, callback])
algorithm
<string> | <null> | <undefined>
data
<ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>
key
<Object> | <string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView> | <KeyObject> | <CryptoKey>
signature
<ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>
callback
<Function> true
or false
depending on the validity of the signature for the data and public key if the callback
function is not provided.Verifies the given signature for data
using the given key and algorithm. If algorithm
is null
or undefined
, then the algorithm is dependent upon the key type (especially Ed25519 and Ed448).
If key
is not a KeyObject
, this function behaves as if key
had been passed to crypto.createPublicKey()
. If it is an object, the following additional properties can be passed:
dsaEncoding
<string> For DSA and ECDSA, this option specifies the format of the signature. It can be one of the following:
'der'
(default): DER-encoded ASN.1 signature structure encoding (r, s)
.'ieee-p1363'
: Signature format r || s
as proposed in IEEE-P1363.padding
<integer> Optional padding value for RSA, one of the following:
crypto.constants.RSA_PKCS1_PADDING
(default)crypto.constants.RSA_PKCS1_PSS_PADDING
RSA_PKCS1_PSS_PADDING
will use MGF1 with the same hash function used to sign the message as specified in section 3.1 of RFC 4055.
saltLength
<integer> Salt length for when padding is RSA_PKCS1_PSS_PADDING
. The special value crypto.constants.RSA_PSS_SALTLEN_DIGEST
sets the salt length to the digest size, crypto.constants.RSA_PSS_SALTLEN_MAX_SIGN
(default) sets it to the maximum permissible value.
The signature
argument is the previously calculated signature for the data
.
Because public keys can be derived from private keys, a private key or a public key may be passed for key
.
If the callback
function is provided this function uses libuv's threadpool.
crypto.webcrypto
Type: <Crypto> An implementation of the Web Crypto API standard.
See the Web Crypto API documentation for details.
For historical reasons, many cryptographic APIs provided by Node.js accept strings as inputs where the underlying cryptographic algorithm works on byte sequences. These instances include plaintexts, ciphertexts, symmetric keys, initialization vectors, passphrases, salts, authentication tags, and additional authenticated data.
When passing strings to cryptographic APIs, consider the following factors.
Not all byte sequences are valid UTF-8 strings. Therefore, when a byte sequence of length n
is derived from a string, its entropy is generally lower than the entropy of a random or pseudorandom n
byte sequence. For example, no UTF-8 string will result in the byte sequence c0 af
. Secret keys should almost exclusively be random or pseudorandom byte sequences.
Similarly, when converting random or pseudorandom byte sequences to UTF-8 strings, subsequences that do not represent valid code points may be replaced by the Unicode replacement character (U+FFFD
). The byte representation of the resulting Unicode string may, therefore, not be equal to the byte sequence that the string was created from.
const original = [0xc0, 0xaf]; const bytesAsString = Buffer.from(original).toString('utf8'); const stringAsBytes = Buffer.from(bytesAsString, 'utf8'); console.log(stringAsBytes); // Prints '<Buffer ef bf bd ef bf bd>'. copy
The outputs of ciphers, hash functions, signature algorithms, and key derivation functions are pseudorandom byte sequences and should not be used as Unicode strings.
When strings are obtained from user input, some Unicode characters can be represented in multiple equivalent ways that result in different byte sequences. For example, when passing a user passphrase to a key derivation function, such as PBKDF2 or scrypt, the result of the key derivation function depends on whether the string uses composed or decomposed characters. Node.js does not normalize character representations. Developers should consider using String.prototype.normalize()
on user inputs before passing them to cryptographic APIs.
The Crypto module was added to Node.js before there was the concept of a unified Stream API, and before there were Buffer
objects for handling binary data. As such, many crypto
classes have methods not typically found on other Node.js classes that implement the streams API (e.g. update()
, final()
, or digest()
). Also, many methods accepted and returned 'latin1'
encoded strings by default rather than Buffer
s. This default was changed after Node.js v0.8 to use Buffer
objects by default instead.
The node:crypto
module still supports some algorithms which are already compromised and are not recommended for use. The API also allows the use of ciphers and hashes with a small key size that are too weak for safe use.
Users should take full responsibility for selecting the crypto algorithm and key size according to their security requirements.
Based on the recommendations of NIST SP 800-131A:
modp1
, modp2
and modp5
have a key size smaller than 2048 bits and are not recommended.See the reference for other recommendations and details.
Some algorithms that have known weaknesses and are of little relevance in practice are only available through the legacy provider, which is not enabled by default.
CCM is one of the supported AEAD algorithms. Applications which use this mode must adhere to certain restrictions when using the cipher API:
authTagLength
option and must be one of 4, 6, 8, 10, 12, 14 or 16 bytes.N
must be between 7 and 13 bytes (7 ≤ N ≤ 13
).2 ** (8 * (15 - N))
bytes.setAuthTag()
before calling update()
. Otherwise, decryption will fail and final()
will throw an error in compliance with section 2.6 of RFC 3610.write(data)
, end(data)
or pipe()
in CCM mode might fail as CCM cannot handle more than one chunk of data per instance.setAAD()
via the plaintextLength
option. Many crypto libraries include the authentication tag in the ciphertext, which means that they produce ciphertexts of the length plaintextLength + authTagLength
. Node.js does not include the authentication tag, so the ciphertext length is always plaintextLength
. This is not necessary if no AAD is used.update()
must be called exactly once.update()
is sufficient to encrypt/decrypt the message, applications must call final()
to compute or verify the authentication tag.MJS modules
import { Buffer } from 'node:buffer'; const { createCipheriv, createDecipheriv, randomBytes, } = await import('node:crypto'); const key = 'keykeykeykeykeykeykeykey'; const nonce = randomBytes(12); const aad = Buffer.from('0123456789', 'hex'); const cipher = createCipheriv('aes-192-ccm', key, nonce, { authTagLength: 16, }); const plaintext = 'Hello world'; cipher.setAAD(aad, { plaintextLength: Buffer.byteLength(plaintext), }); const ciphertext = cipher.update(plaintext, 'utf8'); cipher.final(); const tag = cipher.getAuthTag(); // Now transmit { ciphertext, nonce, tag }. const decipher = createDecipheriv('aes-192-ccm', key, nonce, { authTagLength: 16, }); decipher.setAuthTag(tag); decipher.setAAD(aad, { plaintextLength: ciphertext.length, }); const receivedPlaintext = decipher.update(ciphertext, null, 'utf8'); try { decipher.final(); } catch (err) { throw new Error('Authentication failed!', { cause: err }); } console.log(receivedPlaintext);
CJS modules
const { Buffer } = require('node:buffer'); const { createCipheriv, createDecipheriv, randomBytes, } = require('node:crypto'); const key = 'keykeykeykeykeykeykeykey'; const nonce = randomBytes(12); const aad = Buffer.from('0123456789', 'hex'); const cipher = createCipheriv('aes-192-ccm', key, nonce, { authTagLength: 16, }); const plaintext = 'Hello world'; cipher.setAAD(aad, { plaintextLength: Buffer.byteLength(plaintext), }); const ciphertext = cipher.update(plaintext, 'utf8'); cipher.final(); const tag = cipher.getAuthTag(); // Now transmit { ciphertext, nonce, tag }. const decipher = createDecipheriv('aes-192-ccm', key, nonce, { authTagLength: 16, }); decipher.setAuthTag(tag); decipher.setAAD(aad, { plaintextLength: ciphertext.length, }); const receivedPlaintext = decipher.update(ciphertext, null, 'utf8'); try { decipher.final(); } catch (err) { throw new Error('Authentication failed!', { cause: err }); } console.log(receivedPlaintext);
When using OpenSSL 3, Node.js supports FIPS 140-2 when used with an appropriate OpenSSL 3 provider, such as the FIPS provider from OpenSSL 3 which can be installed by following the instructions in OpenSSL's FIPS README file.
For FIPS support in Node.js you will need:
Node.js will need to be configured with an OpenSSL configuration file that points to the FIPS provider. An example configuration file looks like this:
nodejs_conf = nodejs_init .include /<absolute path>/fipsmodule.cnf [nodejs_init] providers = provider_sect [provider_sect] default = default_sect # The fips section name should match the section name inside the # included fipsmodule.cnf. fips = fips_sect [default_sect] activate = 1 copy
where fipsmodule.cnf
is the FIPS module configuration file generated from the FIPS provider installation step:
openssl fipsinstall copy
Set the OPENSSL_CONF
environment variable to point to your configuration file and OPENSSL_MODULES
to the location of the FIPS provider dynamic library. e.g.
export OPENSSL_CONF=/<path to configuration file>/nodejs.cnf export OPENSSL_MODULES=/<path to openssl lib>/ossl-modules copy
FIPS mode can then be enabled in Node.js either by:
--enable-fips
or --force-fips
command line flags.crypto.setFips(true)
.Optionally FIPS mode can be enabled in Node.js via the OpenSSL configuration file. e.g.
nodejs_conf = nodejs_init .include /<absolute path>/fipsmodule.cnf [nodejs_init] providers = provider_sect alg_section = algorithm_sect [provider_sect] default = default_sect # The fips section name should match the section name inside the # included fipsmodule.cnf. fips = fips_sect [default_sect] activate = 1 [algorithm_sect] default_properties = fips=yes copy
The following constants exported by crypto.constants
apply to various uses of the node:crypto
, node:tls
, and node:https
modules and are generally specific to OpenSSL.
See the list of SSL OP Flags for details.
Constant | Description |
---|---|
SSL_OP_ALL | Applies multiple bug workarounds within OpenSSL. See https://www.openssl.org/docs/man3.0/man3/SSL_CTX_set_options.html for detail. |
SSL_OP_ALLOW_NO_DHE_KEX | Instructs OpenSSL to allow a non-[EC]DHE-based key exchange mode for TLS v1.3 |
SSL_OP_ALLOW_UNSAFE_LEGACY_RENEGOTIATION | Allows legacy insecure renegotiation between OpenSSL and unpatched clients or servers. See https://www.openssl.org/docs/man3.0/man3/SSL_CTX_set_options.html. |
SSL_OP_CIPHER_SERVER_PREFERENCE | Attempts to use the server's preferences instead of the client's when selecting a cipher. Behavior depends on protocol version. See https://www.openssl.org/docs/man3.0/man3/SSL_CTX_set_options.html. |
SSL_OP_CISCO_ANYCONNECT | Instructs OpenSSL to use Cisco's "speshul" version of DTLS_BAD_VER. |
SSL_OP_COOKIE_EXCHANGE | Instructs OpenSSL to turn on cookie exchange. |
SSL_OP_CRYPTOPRO_TLSEXT_BUG | Instructs OpenSSL to add server-hello extension from an early version of the cryptopro draft. |
SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS | Instructs OpenSSL to disable a SSL 3.0/TLS 1.0 vulnerability workaround added in OpenSSL 0.9.6d. |
SSL_OP_LEGACY_SERVER_CONNECT | Allows initial connection to servers that do not support RI. |
SSL_OP_NO_COMPRESSION | Instructs OpenSSL to disable support for SSL/TLS compression. |
SSL_OP_NO_ENCRYPT_THEN_MAC | Instructs OpenSSL to disable encrypt-then-MAC. |
SSL_OP_NO_QUERY_MTU | |
SSL_OP_NO_RENEGOTIATION | Instructs OpenSSL to disable renegotiation. |
SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION | Instructs OpenSSL to always start a new session when performing renegotiation. |
SSL_OP_NO_SSLv2 | Instructs OpenSSL to turn off SSL v2 |
SSL_OP_NO_SSLv3 | Instructs OpenSSL to turn off SSL v3 |
SSL_OP_NO_TICKET | Instructs OpenSSL to disable use of RFC4507bis tickets. |
SSL_OP_NO_TLSv1 | Instructs OpenSSL to turn off TLS v1 |
SSL_OP_NO_TLSv1_1 | Instructs OpenSSL to turn off TLS v1.1 |
SSL_OP_NO_TLSv1_2 | Instructs OpenSSL to turn off TLS v1.2 |
SSL_OP_NO_TLSv1_3 | Instructs OpenSSL to turn off TLS v1.3 |
SSL_OP_PRIORITIZE_CHACHA | Instructs OpenSSL server to prioritize ChaCha20-Poly1305 when the client does. This option has no effect if SSL_OP_CIPHER_SERVER_PREFERENCE is not enabled. |
SSL_OP_TLS_ROLLBACK_BUG | Instructs OpenSSL to disable version rollback attack detection. |
Constant | Description |
---|---|
ENGINE_METHOD_RSA | Limit engine usage to RSA |
ENGINE_METHOD_DSA | Limit engine usage to DSA |
ENGINE_METHOD_DH | Limit engine usage to DH |
ENGINE_METHOD_RAND | Limit engine usage to RAND |
ENGINE_METHOD_EC | Limit engine usage to EC |
ENGINE_METHOD_CIPHERS | Limit engine usage to CIPHERS |
ENGINE_METHOD_DIGESTS | Limit engine usage to DIGESTS |
ENGINE_METHOD_PKEY_METHS | Limit engine usage to PKEY_METHDS |
ENGINE_METHOD_PKEY_ASN1_METHS | Limit engine usage to PKEY_ASN1_METHS |
ENGINE_METHOD_ALL | |
ENGINE_METHOD_NONE |
Constant | Description |
---|---|
DH_CHECK_P_NOT_SAFE_PRIME | |
DH_CHECK_P_NOT_PRIME | |
DH_UNABLE_TO_CHECK_GENERATOR | |
DH_NOT_SUITABLE_GENERATOR | |
RSA_PKCS1_PADDING | |
RSA_SSLV23_PADDING | |
RSA_NO_PADDING | |
RSA_PKCS1_OAEP_PADDING | |
RSA_X931_PADDING | |
RSA_PKCS1_PSS_PADDING | |
RSA_PSS_SALTLEN_DIGEST | Sets the salt length for RSA_PKCS1_PSS_PADDING to the digest size when signing or verifying. |
RSA_PSS_SALTLEN_MAX_SIGN | Sets the salt length for RSA_PKCS1_PSS_PADDING to the maximum permissible value when signing data. |
RSA_PSS_SALTLEN_AUTO | Causes the salt length for RSA_PKCS1_PSS_PADDING to be determined automatically when verifying a signature. |
POINT_CONVERSION_COMPRESSED | |
POINT_CONVERSION_UNCOMPRESSED | |
POINT_CONVERSION_HYBRID |
Constant | Description |
---|---|
defaultCoreCipherList | Specifies the built-in default cipher list used by Node.js. |
defaultCipherList | Specifies the active default cipher list used by the current Node.js process. |
© Joyent, Inc. and other Node contributors
Licensed under the MIT License.
Node.js is a trademark of Joyent, Inc. and is used with its permission.
We are not endorsed by or affiliated with Joyent.
https://nodejs.org/api/crypto.html