Source Code: lib/http2.js
The http2
module provides an implementation of the HTTP/2 protocol. It can be accessed using:
const http2 = require('http2');
The Core API provides a low-level interface designed specifically around support for HTTP/2 protocol features. It is specifically not designed for compatibility with the existing HTTP/1 module API. However, the Compatibility API is.
The http2
Core API is much more symmetric between client and server than the http
API. For instance, most events, like 'error'
, 'connect'
and 'stream'
, can be emitted either by client-side code or server-side code.
The following illustrates a simple HTTP/2 server using the Core API. Since there are no browsers known that support unencrypted HTTP/2, the use of http2.createSecureServer()
is necessary when communicating with browser clients.
const http2 = require('http2'); const fs = require('fs'); const server = http2.createSecureServer({ key: fs.readFileSync('localhost-privkey.pem'), cert: fs.readFileSync('localhost-cert.pem') }); server.on('error', (err) => console.error(err)); server.on('stream', (stream, headers) => { // stream is a Duplex stream.respond({ 'content-type': 'text/html; charset=utf-8', ':status': 200 }); stream.end('<h1>Hello World</h1>'); }); server.listen(8443);
To generate the certificate and key for this example, run:
openssl req -x509 -newkey rsa:2048 -nodes -sha256 -subj '/CN=localhost' \ -keyout localhost-privkey.pem -out localhost-cert.pem
The following illustrates an HTTP/2 client:
const http2 = require('http2'); const fs = require('fs'); const client = http2.connect('https://localhost:8443', { ca: fs.readFileSync('localhost-cert.pem') }); client.on('error', (err) => console.error(err)); const req = client.request({ ':path': '/' }); req.on('response', (headers, flags) => { for (const name in headers) { console.log(`${name}: ${headers[name]}`); } }); req.setEncoding('utf8'); let data = ''; req.on('data', (chunk) => { data += chunk; }); req.on('end', () => { console.log(`\n${data}`); client.close(); }); req.end();
Http2Session
Instances of the http2.Http2Session
class represent an active communications session between an HTTP/2 client and server. Instances of this class are not intended to be constructed directly by user code.
Each Http2Session
instance will exhibit slightly different behaviors depending on whether it is operating as a server or a client. The http2session.type
property can be used to determine the mode in which an Http2Session
is operating. On the server side, user code should rarely have occasion to work with the Http2Session
object directly, with most actions typically taken through interactions with either the Http2Server
or Http2Stream
objects.
User code will not create Http2Session
instances directly. Server-side Http2Session
instances are created by the Http2Server
instance when a new HTTP/2 connection is received. Client-side Http2Session
instances are created using the http2.connect()
method.
Http2Session
and socketsEvery Http2Session
instance is associated with exactly one net.Socket
or tls.TLSSocket
when it is created. When either the Socket
or the Http2Session
are destroyed, both will be destroyed.
Because of the specific serialization and processing requirements imposed by the HTTP/2 protocol, it is not recommended for user code to read data from or write data to a Socket
instance bound to a Http2Session
. Doing so can put the HTTP/2 session into an indeterminate state causing the session and the socket to become unusable.
Once a Socket
has been bound to an Http2Session
, user code should rely solely on the API of the Http2Session
.
'close'
The 'close'
event is emitted once the Http2Session
has been destroyed. Its listener does not expect any arguments.
'connect'
session
<Http2Session>
socket
<net.Socket>
The 'connect'
event is emitted once the Http2Session
has been successfully connected to the remote peer and communication may begin.
User code will typically not listen for this event directly.
'error'
error
<Error>
The 'error'
event is emitted when an error occurs during the processing of an Http2Session
.
'frameError'
type
<integer> The frame type.code
<integer> The error code.id
<integer> The stream id (or 0
if the frame isn't associated with a stream).The 'frameError'
event is emitted when an error occurs while attempting to send a frame on the session. If the frame that could not be sent is associated with a specific Http2Stream
, an attempt to emit a 'frameError'
event on the Http2Stream
is made.
If the 'frameError'
event is associated with a stream, the stream will be closed and destroyed immediately following the 'frameError'
event. If the event is not associated with a stream, the Http2Session
will be shut down immediately following the 'frameError'
event.
'goaway'
errorCode
<number> The HTTP/2 error code specified in the GOAWAY
frame.lastStreamID
<number> The ID of the last stream the remote peer successfully processed (or 0
if no ID is specified).opaqueData
<Buffer> If additional opaque data was included in the GOAWAY
frame, a Buffer
instance will be passed containing that data.The 'goaway'
event is emitted when a GOAWAY
frame is received.
The Http2Session
instance will be shut down automatically when the 'goaway'
event is emitted.
'localSettings'
settings
<HTTP/2 Settings Object> A copy of the SETTINGS
frame received.The 'localSettings'
event is emitted when an acknowledgment SETTINGS
frame has been received.
When using http2session.settings()
to submit new settings, the modified settings do not take effect until the 'localSettings'
event is emitted.
session.settings({ enablePush: false }); session.on('localSettings', (settings) => { /* Use the new settings */ });
'ping'
payload
<Buffer> The PING
frame 8-byte payloadThe 'ping'
event is emitted whenever a PING
frame is received from the connected peer.
'remoteSettings'
settings
<HTTP/2 Settings Object> A copy of the SETTINGS
frame received.The 'remoteSettings'
event is emitted when a new SETTINGS
frame is received from the connected peer.
session.on('remoteSettings', (settings) => { /* Use the new settings */ });
'stream'
stream
<Http2Stream> A reference to the streamheaders
<HTTP/2 Headers Object> An object describing the headersflags
<number> The associated numeric flagsrawHeaders
<Array> An array containing the raw header names followed by their respective values.The 'stream'
event is emitted when a new Http2Stream
is created.
const http2 = require('http2'); session.on('stream', (stream, headers, flags) => { const method = headers[':method']; const path = headers[':path']; // ... stream.respond({ ':status': 200, 'content-type': 'text/plain; charset=utf-8' }); stream.write('hello '); stream.end('world'); });
On the server side, user code will typically not listen for this event directly, and would instead register a handler for the 'stream'
event emitted by the net.Server
or tls.Server
instances returned by http2.createServer()
and http2.createSecureServer()
, respectively, as in the example below:
const http2 = require('http2'); // Create an unencrypted HTTP/2 server const server = http2.createServer(); server.on('stream', (stream, headers) => { stream.respond({ 'content-type': 'text/html; charset=utf-8', ':status': 200 }); stream.on('error', (error) => console.error(error)); stream.end('<h1>Hello World</h1>'); }); server.listen(80);
Even though HTTP/2 streams and network sockets are not in a 1:1 correspondence, a network error will destroy each individual stream and must be handled on the stream level, as shown above.
'timeout'
After the http2session.setTimeout()
method is used to set the timeout period for this Http2Session
, the 'timeout'
event is emitted if there is no activity on the Http2Session
after the configured number of milliseconds. Its listener does not expect any arguments.
session.setTimeout(2000); session.on('timeout', () => { /* .. */ });
http2session.alpnProtocol
Value will be undefined
if the Http2Session
is not yet connected to a socket, h2c
if the Http2Session
is not connected to a TLSSocket
, or will return the value of the connected TLSSocket
's own alpnProtocol
property.
http2session.close([callback])
callback
<Function>
Gracefully closes the Http2Session
, allowing any existing streams to complete on their own and preventing new Http2Stream
instances from being created. Once closed, http2session.destroy()
might be called if there are no open Http2Stream
instances.
If specified, the callback
function is registered as a handler for the 'close'
event.
http2session.closed
Will be true
if this Http2Session
instance has been closed, otherwise false
.
http2session.connecting
Will be true
if this Http2Session
instance is still connecting, will be set to false
before emitting connect
event and/or calling the http2.connect
callback.
http2session.destroy([error][, code])
error
<Error> An Error
object if the Http2Session
is being destroyed due to an error.code
<number> The HTTP/2 error code to send in the final GOAWAY
frame. If unspecified, and error
is not undefined, the default is INTERNAL_ERROR
, otherwise defaults to NO_ERROR
.Immediately terminates the Http2Session
and the associated net.Socket
or tls.TLSSocket
.
Once destroyed, the Http2Session
will emit the 'close'
event. If error
is not undefined, an 'error'
event will be emitted immediately before the 'close'
event.
If there are any remaining open Http2Streams
associated with the Http2Session
, those will also be destroyed.
http2session.destroyed
Will be true
if this Http2Session
instance has been destroyed and must no longer be used, otherwise false
.
http2session.encrypted
Value is undefined
if the Http2Session
session socket has not yet been connected, true
if the Http2Session
is connected with a TLSSocket
, and false
if the Http2Session
is connected to any other kind of socket or stream.
http2session.goaway([code[, lastStreamID[, opaqueData]]])
code
<number> An HTTP/2 error codelastStreamID
<number> The numeric ID of the last processed Http2Stream
opaqueData
<Buffer> | <TypedArray> | <DataView> A TypedArray
or DataView
instance containing additional data to be carried within the GOAWAY
frame.Transmits a GOAWAY
frame to the connected peer without shutting down the Http2Session
.
http2session.localSettings
A prototype-less object describing the current local settings of this Http2Session
. The local settings are local to this Http2Session
instance.
http2session.originSet
If the Http2Session
is connected to a TLSSocket
, the originSet
property will return an Array
of origins for which the Http2Session
may be considered authoritative.
The originSet
property is only available when using a secure TLS connection.
http2session.pendingSettingsAck
Indicates whether the Http2Session
is currently waiting for acknowledgment of a sent SETTINGS
frame. Will be true
after calling the http2session.settings()
method. Will be false
once all sent SETTINGS
frames have been acknowledged.
http2session.ping([payload, ]callback)
payload
<Buffer> | <TypedArray> | <DataView> Optional ping payload.callback
<Function>
Sends a PING
frame to the connected HTTP/2 peer. A callback
function must be provided. The method will return true
if the PING
was sent, false
otherwise.
The maximum number of outstanding (unacknowledged) pings is determined by the maxOutstandingPings
configuration option. The default maximum is 10.
If provided, the payload
must be a Buffer
, TypedArray
, or DataView
containing 8 bytes of data that will be transmitted with the PING
and returned with the ping acknowledgment.
The callback will be invoked with three arguments: an error argument that will be null
if the PING
was successfully acknowledged, a duration
argument that reports the number of milliseconds elapsed since the ping was sent and the acknowledgment was received, and a Buffer
containing the 8-byte PING
payload.
session.ping(Buffer.from('abcdefgh'), (err, duration, payload) => { if (!err) { console.log(`Ping acknowledged in ${duration} milliseconds`); console.log(`With payload '${payload.toString()}'`); } });
If the payload
argument is not specified, the default payload will be the 64-bit timestamp (little endian) marking the start of the PING
duration.
http2session.ref()
Calls ref()
on this Http2Session
instance's underlying net.Socket
.
http2session.remoteSettings
A prototype-less object describing the current remote settings of this Http2Session
. The remote settings are set by the connected HTTP/2 peer.
http2session.setTimeout(msecs, callback)
msecs
<number>
callback
<Function>
Used to set a callback function that is called when there is no activity on the Http2Session
after msecs
milliseconds. The given callback
is registered as a listener on the 'timeout'
event.
http2session.socket
Returns a Proxy
object that acts as a net.Socket
(or tls.TLSSocket
) but limits available methods to ones safe to use with HTTP/2.
destroy
, emit
, end
, pause
, read
, resume
, and write
will throw an error with code ERR_HTTP2_NO_SOCKET_MANIPULATION
. See Http2Session
and Sockets for more information.
setTimeout
method will be called on this Http2Session
.
All other interactions will be routed directly to the socket.
http2session.state
Provides miscellaneous information about the current state of the Http2Session
.
effectiveLocalWindowSize
<number> The current local (receive) flow control window size for the Http2Session
.effectiveRecvDataLength
<number> The current number of bytes that have been received since the last flow control WINDOW_UPDATE
.nextStreamID
<number> The numeric identifier to be used the next time a new Http2Stream
is created by this Http2Session
.localWindowSize
<number> The number of bytes that the remote peer can send without receiving a WINDOW_UPDATE
.lastProcStreamID
<number> The numeric id of the Http2Stream
for which a HEADERS
or DATA
frame was most recently received.remoteWindowSize
<number> The number of bytes that this Http2Session
may send without receiving a WINDOW_UPDATE
.outboundQueueSize
<number> The number of frames currently within the outbound queue for this Http2Session
.deflateDynamicTableSize
<number> The current size in bytes of the outbound header compression state table.inflateDynamicTableSize
<number> The current size in bytes of the inbound header compression state table.An object describing the current status of this Http2Session
.
http2session.settings([settings][, callback])
settings
<HTTP/2 Settings Object>
callback
<Function> Callback that is called once the session is connected or right away if the session is already connected.
err
<Error> | <null>
settings
<HTTP/2 Settings Object> The updated settings
object.duration
<integer>
Updates the current local settings for this Http2Session
and sends a new SETTINGS
frame to the connected HTTP/2 peer.
Once called, the http2session.pendingSettingsAck
property will be true
while the session is waiting for the remote peer to acknowledge the new settings.
The new settings will not become effective until the SETTINGS
acknowledgment is received and the 'localSettings'
event is emitted. It is possible to send multiple SETTINGS
frames while acknowledgment is still pending.
http2session.type
The http2session.type
will be equal to http2.constants.NGHTTP2_SESSION_SERVER
if this Http2Session
instance is a server, and http2.constants.NGHTTP2_SESSION_CLIENT
if the instance is a client.
http2session.unref()
Calls unref()
on this Http2Session
instance's underlying net.Socket
.
ServerHttp2Session
serverhttp2session.altsvc(alt, originOrStream)
alt
<string> A description of the alternative service configuration as defined by RFC 7838.originOrStream
<number> | <string> | <URL> | <Object> Either a URL string specifying the origin (or an Object
with an origin
property) or the numeric identifier of an active Http2Stream
as given by the http2stream.id
property.Submits an ALTSVC
frame (as defined by RFC 7838) to the connected client.
const http2 = require('http2'); const server = http2.createServer(); server.on('session', (session) => { // Set altsvc for origin https://example.org:80 session.altsvc('h2=":8000"', 'https://example.org:80'); }); server.on('stream', (stream) => { // Set altsvc for a specific stream stream.session.altsvc('h2=":8000"', stream.id); });
Sending an ALTSVC
frame with a specific stream ID indicates that the alternate service is associated with the origin of the given Http2Stream
.
The alt
and origin string must contain only ASCII bytes and are strictly interpreted as a sequence of ASCII bytes. The special value 'clear'
may be passed to clear any previously set alternative service for a given domain.
When a string is passed for the originOrStream
argument, it will be parsed as a URL and the origin will be derived. For instance, the origin for the HTTP URL 'https://example.org/foo/bar'
is the ASCII string 'https://example.org'
. An error will be thrown if either the given string cannot be parsed as a URL or if a valid origin cannot be derived.
A URL
object, or any object with an origin
property, may be passed as originOrStream
, in which case the value of the origin
property will be used. The value of the origin
property must be a properly serialized ASCII origin.
The format of the alt
parameter is strictly defined by RFC 7838 as an ASCII string containing a comma-delimited list of "alternative" protocols associated with a specific host and port.
For example, the value 'h2="example.org:81"'
indicates that the HTTP/2 protocol is available on the host 'example.org'
on TCP/IP port 81. The host and port must be contained within the quote ("
) characters.
Multiple alternatives may be specified, for instance: 'h2="example.org:81", h2=":82"'
.
The protocol identifier ('h2'
in the examples) may be any valid ALPN Protocol ID.
The syntax of these values is not validated by the Node.js implementation and are passed through as provided by the user or received from the peer.
serverhttp2session.origin(...origins)
Submits an ORIGIN
frame (as defined by RFC 8336) to the connected client to advertise the set of origins for which the server is capable of providing authoritative responses.
const http2 = require('http2'); const options = getSecureOptionsSomehow(); const server = http2.createSecureServer(options); server.on('stream', (stream) => { stream.respond(); stream.end('ok'); }); server.on('session', (session) => { session.origin('https://example.com', 'https://example.org'); });
When a string is passed as an origin
, it will be parsed as a URL and the origin will be derived. For instance, the origin for the HTTP URL 'https://example.org/foo/bar'
is the ASCII string 'https://example.org'
. An error will be thrown if either the given string cannot be parsed as a URL or if a valid origin cannot be derived.
A URL
object, or any object with an origin
property, may be passed as an origin
, in which case the value of the origin
property will be used. The value of the origin
property must be a properly serialized ASCII origin.
Alternatively, the origins
option may be used when creating a new HTTP/2 server using the http2.createSecureServer()
method:
const http2 = require('http2'); const options = getSecureOptionsSomehow(); options.origins = ['https://example.com', 'https://example.org']; const server = http2.createSecureServer(options); server.on('stream', (stream) => { stream.respond(); stream.end('ok'); });
ClientHttp2Session
'altsvc'
The 'altsvc'
event is emitted whenever an ALTSVC
frame is received by the client. The event is emitted with the ALTSVC
value, origin, and stream ID. If no origin
is provided in the ALTSVC
frame, origin
will be an empty string.
const http2 = require('http2'); const client = http2.connect('https://example.org'); client.on('altsvc', (alt, origin, streamId) => { console.log(alt); console.log(origin); console.log(streamId); });
'origin'
origins
<string[]>
The 'origin'
event is emitted whenever an ORIGIN
frame is received by the client. The event is emitted with an array of origin
strings. The http2session.originSet
will be updated to include the received origins.
const http2 = require('http2'); const client = http2.connect('https://example.org'); client.on('origin', (origins) => { for (let n = 0; n < origins.length; n++) console.log(origins[n]); });
The 'origin'
event is only emitted when using a secure TLS connection.
clienthttp2session.request(headers[, options])
headers
<HTTP/2 Headers Object>
options
<Object>
endStream
<boolean> true
if the Http2Stream
writable side should be closed initially, such as when sending a GET
request that should not expect a payload body.exclusive
<boolean> When true
and parent
identifies a parent Stream, the created stream is made the sole direct dependency of the parent, with all other existing dependents made a dependent of the newly created stream. Default: false
.parent
<number> Specifies the numeric identifier of a stream the newly created stream is dependent on.weight
<number> Specifies the relative dependency of a stream in relation to other streams with the same parent
. The value is a number between 1
and 256
(inclusive).waitForTrailers
<boolean> When true
, the Http2Stream
will emit the 'wantTrailers'
event after the final DATA
frame has been sent.Returns: <ClientHttp2Stream>
For HTTP/2 Client Http2Session
instances only, the http2session.request()
creates and returns an Http2Stream
instance that can be used to send an HTTP/2 request to the connected server.
This method is only available if http2session.type
is equal to http2.constants.NGHTTP2_SESSION_CLIENT
.
const http2 = require('http2'); const clientSession = http2.connect('https://localhost:1234'); const { HTTP2_HEADER_PATH, HTTP2_HEADER_STATUS } = http2.constants; const req = clientSession.request({ [HTTP2_HEADER_PATH]: '/' }); req.on('response', (headers) => { console.log(headers[HTTP2_HEADER_STATUS]); req.on('data', (chunk) => { /* .. */ }); req.on('end', () => { /* .. */ }); });
When the options.waitForTrailers
option is set, the 'wantTrailers'
event is emitted immediately after queuing the last chunk of payload data to be sent. The http2stream.sendTrailers()
method can then be called to send trailing headers to the peer.
When options.waitForTrailers
is set, the Http2Stream
will not automatically close when the final DATA
frame is transmitted. User code must call either http2stream.sendTrailers()
or http2stream.close()
to close the Http2Stream
.
The :method
and :path
pseudo-headers are not specified within headers
, they respectively default to:
:method
= 'GET'
:path
= /
Http2Stream
Each instance of the Http2Stream
class represents a bidirectional HTTP/2 communications stream over an Http2Session
instance. Any single Http2Session
may have up to 231-1 Http2Stream
instances over its lifetime.
User code will not construct Http2Stream
instances directly. Rather, these are created, managed, and provided to user code through the Http2Session
instance. On the server, Http2Stream
instances are created either in response to an incoming HTTP request (and handed off to user code via the 'stream'
event), or in response to a call to the http2stream.pushStream()
method. On the client, Http2Stream
instances are created and returned when either the http2session.request()
method is called, or in response to an incoming 'push'
event.
The Http2Stream
class is a base for the ServerHttp2Stream
and ClientHttp2Stream
classes, each of which is used specifically by either the Server or Client side, respectively.
All Http2Stream
instances are Duplex
streams. The Writable
side of the Duplex
is used to send data to the connected peer, while the Readable
side is used to receive data sent by the connected peer.
The default text character encoding for all Http2Stream
s is UTF-8. As a best practice, it is recommended that when using an Http2Stream
to send text, the 'content-type'
header should be set and should identify the character encoding used.
stream.respond({ 'content-type': 'text/html; charset=utf-8', ':status': 200 });
Http2Stream
LifecycleOn the server side, instances of ServerHttp2Stream
are created either when:
HEADERS
frame with a previously unused stream ID is received;http2stream.pushStream()
method is called.On the client side, instances of ClientHttp2Stream
are created when the http2session.request()
method is called.
On the client, the Http2Stream
instance returned by http2session.request()
may not be immediately ready for use if the parent Http2Session
has not yet been fully established. In such cases, operations called on the Http2Stream
will be buffered until the 'ready'
event is emitted. User code should rarely, if ever, need to handle the 'ready'
event directly. The ready status of an Http2Stream
can be determined by checking the value of http2stream.id
. If the value is undefined
, the stream is not yet ready for use.
All Http2Stream
instances are destroyed either when:
RST_STREAM
frame for the stream is received by the connected peer, and pending data has been read.http2stream.close()
method is called, and pending data has been read.http2stream.destroy()
or http2session.destroy()
methods are called.When an Http2Stream
instance is destroyed, an attempt will be made to send an RST_STREAM
frame to the connected peer.
When the Http2Stream
instance is destroyed, the 'close'
event will be emitted. Because Http2Stream
is an instance of stream.Duplex
, the 'end'
event will also be emitted if the stream data is currently flowing. The 'error'
event may also be emitted if http2stream.destroy()
was called with an Error
passed as the first argument.
After the Http2Stream
has been destroyed, the http2stream.destroyed
property will be true
and the http2stream.rstCode
property will specify the RST_STREAM
error code. The Http2Stream
instance is no longer usable once destroyed.
'aborted'
The 'aborted'
event is emitted whenever a Http2Stream
instance is abnormally aborted in mid-communication. Its listener does not expect any arguments.
The 'aborted'
event will only be emitted if the Http2Stream
writable side has not been ended.
'close'
The 'close'
event is emitted when the Http2Stream
is destroyed. Once this event is emitted, the Http2Stream
instance is no longer usable.
The HTTP/2 error code used when closing the stream can be retrieved using the http2stream.rstCode
property. If the code is any value other than NGHTTP2_NO_ERROR
(0
), an 'error'
event will have also been emitted.
'error'
error
<Error>
The 'error'
event is emitted when an error occurs during the processing of an Http2Stream
.
'frameError'
type
<integer> The frame type.code
<integer> The error code.id
<integer> The stream id (or 0
if the frame isn't associated with a stream).The 'frameError'
event is emitted when an error occurs while attempting to send a frame. When invoked, the handler function will receive an integer argument identifying the frame type, and an integer argument identifying the error code. The Http2Stream
instance will be destroyed immediately after the 'frameError'
event is emitted.
'ready'
The 'ready'
event is emitted when the Http2Stream
has been opened, has been assigned an id
, and can be used. The listener does not expect any arguments.
'timeout'
The 'timeout'
event is emitted after no activity is received for this Http2Stream
within the number of milliseconds set using http2stream.setTimeout()
. Its listener does not expect any arguments.
'trailers'
headers
<HTTP/2 Headers Object> An object describing the headersflags
<number> The associated numeric flagsThe 'trailers'
event is emitted when a block of headers associated with trailing header fields is received. The listener callback is passed the HTTP/2 Headers Object and flags associated with the headers.
This event might not be emitted if http2stream.end()
is called before trailers are received and the incoming data is not being read or listened for.
stream.on('trailers', (headers, flags) => { console.log(headers); });
'wantTrailers'
The 'wantTrailers'
event is emitted when the Http2Stream
has queued the final DATA
frame to be sent on a frame and the Http2Stream
is ready to send trailing headers. When initiating a request or response, the waitForTrailers
option must be set for this event to be emitted.
http2stream.aborted
Set to true
if the Http2Stream
instance was aborted abnormally. When set, the 'aborted'
event will have been emitted.
http2stream.bufferSize
This property shows the number of characters currently buffered to be written. See net.Socket.bufferSize
for details.
http2stream.close(code[, callback])
code
<number> Unsigned 32-bit integer identifying the error code. Default: http2.constants.NGHTTP2_NO_ERROR
(0x00
).callback
<Function> An optional function registered to listen for the 'close'
event.Closes the Http2Stream
instance by sending an RST_STREAM
frame to the connected HTTP/2 peer.
http2stream.closed
Set to true
if the Http2Stream
instance has been closed.
http2stream.destroyed
Set to true
if the Http2Stream
instance has been destroyed and is no longer usable.
http2stream.endAfterHeaders
Set the true
if the END_STREAM
flag was set in the request or response HEADERS frame received, indicating that no additional data should be received and the readable side of the Http2Stream
will be closed.
http2stream.id
The numeric stream identifier of this Http2Stream
instance. Set to undefined
if the stream identifier has not yet been assigned.
http2stream.pending
Set to true
if the Http2Stream
instance has not yet been assigned a numeric stream identifier.
http2stream.priority(options)
options
<Object>
exclusive
<boolean> When true
and parent
identifies a parent Stream, this stream is made the sole direct dependency of the parent, with all other existing dependents made a dependent of this stream. Default: false
.parent
<number> Specifies the numeric identifier of a stream this stream is dependent on.weight
<number> Specifies the relative dependency of a stream in relation to other streams with the same parent
. The value is a number between 1
and 256
(inclusive).silent
<boolean> When true
, changes the priority locally without sending a PRIORITY
frame to the connected peer.Updates the priority for this Http2Stream
instance.
http2stream.rstCode
Set to the RST_STREAM
error code reported when the Http2Stream
is destroyed after either receiving an RST_STREAM
frame from the connected peer, calling http2stream.close()
, or http2stream.destroy()
. Will be undefined
if the Http2Stream
has not been closed.
http2stream.sentHeaders
An object containing the outbound headers sent for this Http2Stream
.
http2stream.sentInfoHeaders
An array of objects containing the outbound informational (additional) headers sent for this Http2Stream
.
http2stream.sentTrailers
An object containing the outbound trailers sent for this HttpStream
.
http2stream.session
A reference to the Http2Session
instance that owns this Http2Stream
. The value will be undefined
after the Http2Stream
instance is destroyed.
http2stream.setTimeout(msecs, callback)
msecs
<number>
callback
<Function>
const http2 = require('http2'); const client = http2.connect('http://example.org:8000'); const { NGHTTP2_CANCEL } = http2.constants; const req = client.request({ ':path': '/' }); // Cancel the stream if there's no activity after 5 seconds req.setTimeout(5000, () => req.close(NGHTTP2_CANCEL));
http2stream.state
Provides miscellaneous information about the current state of the Http2Stream
.
localWindowSize
<number> The number of bytes the connected peer may send for this Http2Stream
without receiving a WINDOW_UPDATE
.state
<number> A flag indicating the low-level current state of the Http2Stream
as determined by nghttp2
.localClose
<number> 1
if this Http2Stream
has been closed locally.remoteClose
<number> 1
if this Http2Stream
has been closed remotely.sumDependencyWeight
<number> The sum weight of all Http2Stream
instances that depend on this Http2Stream
as specified using PRIORITY
frames.weight
<number> The priority weight of this Http2Stream
.A current state of this Http2Stream
.
http2stream.sendTrailers(headers)
headers
<HTTP/2 Headers Object>
Sends a trailing HEADERS
frame to the connected HTTP/2 peer. This method will cause the Http2Stream
to be immediately closed and must only be called after the 'wantTrailers'
event has been emitted. When sending a request or sending a response, the options.waitForTrailers
option must be set in order to keep the Http2Stream
open after the final DATA
frame so that trailers can be sent.
const http2 = require('http2'); const server = http2.createServer(); server.on('stream', (stream) => { stream.respond(undefined, { waitForTrailers: true }); stream.on('wantTrailers', () => { stream.sendTrailers({ xyz: 'abc' }); }); stream.end('Hello World'); });
The HTTP/1 specification forbids trailers from containing HTTP/2 pseudo-header fields (e.g. ':method'
, ':path'
, etc).
ClientHttp2Stream
The ClientHttp2Stream
class is an extension of Http2Stream
that is used exclusively on HTTP/2 Clients. Http2Stream
instances on the client provide events such as 'response'
and 'push'
that are only relevant on the client.
'continue'
Emitted when the server sends a 100 Continue
status, usually because the request contained Expect: 100-continue
. This is an instruction that the client should send the request body.
'headers'
The 'headers'
event is emitted when an additional block of headers is received for a stream, such as when a block of 1xx
informational headers is received. The listener callback is passed the HTTP/2 Headers Object and flags associated with the headers.
stream.on('headers', (headers, flags) => { console.log(headers); });
'push'
The 'push'
event is emitted when response headers for a Server Push stream are received. The listener callback is passed the HTTP/2 Headers Object and flags associated with the headers.
stream.on('push', (headers, flags) => { console.log(headers); });
'response'
The 'response'
event is emitted when a response HEADERS
frame has been received for this stream from the connected HTTP/2 server. The listener is invoked with two arguments: an Object
containing the received HTTP/2 Headers Object, and flags associated with the headers.
const http2 = require('http2'); const client = http2.connect('https://localhost'); const req = client.request({ ':path': '/' }); req.on('response', (headers, flags) => { console.log(headers[':status']); });
ServerHttp2Stream
The ServerHttp2Stream
class is an extension of Http2Stream
that is used exclusively on HTTP/2 Servers. Http2Stream
instances on the server provide additional methods such as http2stream.pushStream()
and http2stream.respond()
that are only relevant on the server.
http2stream.additionalHeaders(headers)
headers
<HTTP/2 Headers Object>
Sends an additional informational HEADERS
frame to the connected HTTP/2 peer.
http2stream.headersSent
True if headers were sent, false otherwise (read-only).
http2stream.pushAllowed
Read-only property mapped to the SETTINGS_ENABLE_PUSH
flag of the remote client's most recent SETTINGS
frame. Will be true
if the remote peer accepts push streams, false
otherwise. Settings are the same for every Http2Stream
in the same Http2Session
.
http2stream.pushStream(headers[, options], callback)
headers
<HTTP/2 Headers Object>
options
<Object>
exclusive
<boolean> When true
and parent
identifies a parent Stream, the created stream is made the sole direct dependency of the parent, with all other existing dependents made a dependent of the newly created stream. Default: false
.parent
<number> Specifies the numeric identifier of a stream the newly created stream is dependent on.callback
<Function> Callback that is called once the push stream has been initiated.
err
<Error>
pushStream
<ServerHttp2Stream> The returned pushStream
object.headers
<HTTP/2 Headers Object> Headers object the pushStream
was initiated with.Initiates a push stream. The callback is invoked with the new Http2Stream
instance created for the push stream passed as the second argument, or an Error
passed as the first argument.
const http2 = require('http2'); const server = http2.createServer(); server.on('stream', (stream) => { stream.respond({ ':status': 200 }); stream.pushStream({ ':path': '/' }, (err, pushStream, headers) => { if (err) throw err; pushStream.respond({ ':status': 200 }); pushStream.end('some pushed data'); }); stream.end('some data'); });
Setting the weight of a push stream is not allowed in the HEADERS
frame. Pass a weight
value to http2stream.priority
with the silent
option set to true
to enable server-side bandwidth balancing between concurrent streams.
Calling http2stream.pushStream()
from within a pushed stream is not permitted and will throw an error.
http2stream.respond([headers[, options]])
headers
<HTTP/2 Headers Object>
options
<Object>
const http2 = require('http2'); const server = http2.createServer(); server.on('stream', (stream) => { stream.respond({ ':status': 200 }); stream.end('some data'); });
When the options.waitForTrailers
option is set, the 'wantTrailers'
event will be emitted immediately after queuing the last chunk of payload data to be sent. The http2stream.sendTrailers()
method can then be used to sent trailing header fields to the peer.
When options.waitForTrailers
is set, the Http2Stream
will not automatically close when the final DATA
frame is transmitted. User code must call either http2stream.sendTrailers()
or http2stream.close()
to close the Http2Stream
.
const http2 = require('http2'); const server = http2.createServer(); server.on('stream', (stream) => { stream.respond({ ':status': 200 }, { waitForTrailers: true }); stream.on('wantTrailers', () => { stream.sendTrailers({ ABC: 'some value to send' }); }); stream.end('some data'); });
http2stream.respondWithFD(fd[, headers[, options]])
fd
<number> | <FileHandle> A readable file descriptor.headers
<HTTP/2 Headers Object>
options
<Object>
statCheck
<Function>
waitForTrailers
<boolean> When true
, the Http2Stream
will emit the 'wantTrailers'
event after the final DATA
frame has been sent.offset
<number> The offset position at which to begin reading.length
<number> The amount of data from the fd to send.Initiates a response whose data is read from the given file descriptor. No validation is performed on the given file descriptor. If an error occurs while attempting to read data using the file descriptor, the Http2Stream
will be closed using an RST_STREAM
frame using the standard INTERNAL_ERROR
code.
When used, the Http2Stream
object's Duplex
interface will be closed automatically.
const http2 = require('http2'); const fs = require('fs'); const server = http2.createServer(); server.on('stream', (stream) => { const fd = fs.openSync('/some/file', 'r'); const stat = fs.fstatSync(fd); const headers = { 'content-length': stat.size, 'last-modified': stat.mtime.toUTCString(), 'content-type': 'text/plain; charset=utf-8' }; stream.respondWithFD(fd, headers); stream.on('close', () => fs.closeSync(fd)); });
The optional options.statCheck
function may be specified to give user code an opportunity to set additional content headers based on the fs.Stat
details of the given fd. If the statCheck
function is provided, the http2stream.respondWithFD()
method will perform an fs.fstat()
call to collect details on the provided file descriptor.
The offset
and length
options may be used to limit the response to a specific range subset. This can be used, for instance, to support HTTP Range requests.
The file descriptor or FileHandle
is not closed when the stream is closed, so it will need to be closed manually once it is no longer needed. Using the same file descriptor concurrently for multiple streams is not supported and may result in data loss. Re-using a file descriptor after a stream has finished is supported.
When the options.waitForTrailers
option is set, the 'wantTrailers'
event will be emitted immediately after queuing the last chunk of payload data to be sent. The http2stream.sendTrailers()
method can then be used to sent trailing header fields to the peer.
When options.waitForTrailers
is set, the Http2Stream
will not automatically close when the final DATA
frame is transmitted. User code must call either http2stream.sendTrailers()
or http2stream.close()
to close the Http2Stream
.
const http2 = require('http2'); const fs = require('fs'); const server = http2.createServer(); server.on('stream', (stream) => { const fd = fs.openSync('/some/file', 'r'); const stat = fs.fstatSync(fd); const headers = { 'content-length': stat.size, 'last-modified': stat.mtime.toUTCString(), 'content-type': 'text/plain; charset=utf-8' }; stream.respondWithFD(fd, headers, { waitForTrailers: true }); stream.on('wantTrailers', () => { stream.sendTrailers({ ABC: 'some value to send' }); }); stream.on('close', () => fs.closeSync(fd)); });
http2stream.respondWithFile(path[, headers[, options]])
path
<string> | <Buffer> | <URL>
headers
<HTTP/2 Headers Object>
options
<Object>
statCheck
<Function>
onError
<Function> Callback function invoked in the case of an error before send.waitForTrailers
<boolean> When true
, the Http2Stream
will emit the 'wantTrailers'
event after the final DATA
frame has been sent.offset
<number> The offset position at which to begin reading.length
<number> The amount of data from the fd to send.Sends a regular file as the response. The path
must specify a regular file or an 'error'
event will be emitted on the Http2Stream
object.
When used, the Http2Stream
object's Duplex
interface will be closed automatically.
The optional options.statCheck
function may be specified to give user code an opportunity to set additional content headers based on the fs.Stat
details of the given file:
If an error occurs while attempting to read the file data, the Http2Stream
will be closed using an RST_STREAM
frame using the standard INTERNAL_ERROR
code. If the onError
callback is defined, then it will be called. Otherwise the stream will be destroyed.
Example using a file path:
const http2 = require('http2'); const server = http2.createServer(); server.on('stream', (stream) => { function statCheck(stat, headers) { headers['last-modified'] = stat.mtime.toUTCString(); } function onError(err) { if (err.code === 'ENOENT') { stream.respond({ ':status': 404 }); } else { stream.respond({ ':status': 500 }); } stream.end(); } stream.respondWithFile('/some/file', { 'content-type': 'text/plain; charset=utf-8' }, { statCheck, onError }); });
The options.statCheck
function may also be used to cancel the send operation by returning false
. For instance, a conditional request may check the stat results to determine if the file has been modified to return an appropriate 304
response:
const http2 = require('http2'); const server = http2.createServer(); server.on('stream', (stream) => { function statCheck(stat, headers) { // Check the stat here... stream.respond({ ':status': 304 }); return false; // Cancel the send operation } stream.respondWithFile('/some/file', { 'content-type': 'text/plain; charset=utf-8' }, { statCheck }); });
The content-length
header field will be automatically set.
The offset
and length
options may be used to limit the response to a specific range subset. This can be used, for instance, to support HTTP Range requests.
The options.onError
function may also be used to handle all the errors that could happen before the delivery of the file is initiated. The default behavior is to destroy the stream.
When the options.waitForTrailers
option is set, the 'wantTrailers'
event will be emitted immediately after queuing the last chunk of payload data to be sent. The http2stream.sendTrailers()
method can then be used to sent trailing header fields to the peer.
When options.waitForTrailers
is set, the Http2Stream
will not automatically close when the final DATA
frame is transmitted. User code must call either http2stream.sendTrailers()
or http2stream.close()
to close the Http2Stream
.
const http2 = require('http2'); const server = http2.createServer(); server.on('stream', (stream) => { stream.respondWithFile('/some/file', { 'content-type': 'text/plain; charset=utf-8' }, { waitForTrailers: true }); stream.on('wantTrailers', () => { stream.sendTrailers({ ABC: 'some value to send' }); }); });
Http2Server
Instances of Http2Server
are created using the http2.createServer()
function. The Http2Server
class is not exported directly by the http2
module.
'checkContinue'
request
<http2.Http2ServerRequest>
response
<http2.Http2ServerResponse>
If a 'request'
listener is registered or http2.createServer()
is supplied a callback function, the 'checkContinue'
event is emitted each time a request with an HTTP Expect: 100-continue
is received. If this event is not listened for, the server will automatically respond with a status 100 Continue
as appropriate.
Handling this event involves calling response.writeContinue()
if the client should continue to send the request body, or generating an appropriate HTTP response (e.g. 400 Bad Request) if the client should not continue to send the request body.
When this event is emitted and handled, the 'request'
event will not be emitted.
'connection'
socket
<stream.Duplex>
This event is emitted when a new TCP stream is established. socket
is typically an object of type net.Socket
. Usually users will not want to access this event.
This event can also be explicitly emitted by users to inject connections into the HTTP server. In that case, any Duplex
stream can be passed.
'request'
request
<http2.Http2ServerRequest>
response
<http2.Http2ServerResponse>
Emitted each time there is a request. There may be multiple requests per session. See the Compatibility API.
'session'
The 'session'
event is emitted when a new Http2Session
is created by the Http2Server
.
'sessionError'
The 'sessionError'
event is emitted when an 'error'
event is emitted by an Http2Session
object associated with the Http2Server
.
'stream'
The 'stream'
event is emitted when a 'stream'
event has been emitted by an Http2Session
associated with the server.
const http2 = require('http2'); const { HTTP2_HEADER_METHOD, HTTP2_HEADER_PATH, HTTP2_HEADER_STATUS, HTTP2_HEADER_CONTENT_TYPE } = http2.constants; const server = http2.createServer(); server.on('stream', (stream, headers, flags) => { const method = headers[HTTP2_HEADER_METHOD]; const path = headers[HTTP2_HEADER_PATH]; // ... stream.respond({ [HTTP2_HEADER_STATUS]: 200, [HTTP2_HEADER_CONTENT_TYPE]: 'text/plain; charset=utf-8' }); stream.write('hello '); stream.end('world'); });
'timeout'
The 'timeout'
event is emitted when there is no activity on the Server for a given number of milliseconds set using http2server.setTimeout()
. Default: 2 minutes.
To change the default timeout use the --http-server-default-timeout
flag.
server.close([callback])
callback
<Function>
Stops the server from establishing new sessions. This does not prevent new request streams from being created due to the persistent nature of HTTP/2 sessions. To gracefully shut down the server, call http2session.close()
on all active sessions.
If callback
is provided, it is not invoked until all active sessions have been closed, although the server has already stopped allowing new sessions. See net.Server.close()
for more details.
server.setTimeout([msecs][, callback])
msecs
<number> Default: 120000
(2 minutes)callback
<Function>
Used to set the timeout value for http2 server requests, and sets a callback function that is called when there is no activity on the Http2Server
after msecs
milliseconds.
The given callback is registered as a listener on the 'timeout'
event.
In case of no callback function were assigned, a new ERR_INVALID_CALLBACK
error will be thrown.
To change the default timeout use the --http-server-default-timeout
flag.
Http2SecureServer
Instances of Http2SecureServer
are created using the http2.createSecureServer()
function. The Http2SecureServer
class is not exported directly by the http2
module.
'checkContinue'
request
<http2.Http2ServerRequest>
response
<http2.Http2ServerResponse>
If a 'request'
listener is registered or http2.createSecureServer()
is supplied a callback function, the 'checkContinue'
event is emitted each time a request with an HTTP Expect: 100-continue
is received. If this event is not listened for, the server will automatically respond with a status 100 Continue
as appropriate.
Handling this event involves calling response.writeContinue()
if the client should continue to send the request body, or generating an appropriate HTTP response (e.g. 400 Bad Request) if the client should not continue to send the request body.
When this event is emitted and handled, the 'request'
event will not be emitted.
'connection'
socket
<stream.Duplex>
This event is emitted when a new TCP stream is established, before the TLS handshake begins. socket
is typically an object of type net.Socket
. Usually users will not want to access this event.
This event can also be explicitly emitted by users to inject connections into the HTTP server. In that case, any Duplex
stream can be passed.
'request'
request
<http2.Http2ServerRequest>
response
<http2.Http2ServerResponse>
Emitted each time there is a request. There may be multiple requests per session. See the Compatibility API.
'session'
The 'session'
event is emitted when a new Http2Session
is created by the Http2SecureServer
.
'sessionError'
The 'sessionError'
event is emitted when an 'error'
event is emitted by an Http2Session
object associated with the Http2SecureServer
.
'stream'
The 'stream'
event is emitted when a 'stream'
event has been emitted by an Http2Session
associated with the server.
const http2 = require('http2'); const { HTTP2_HEADER_METHOD, HTTP2_HEADER_PATH, HTTP2_HEADER_STATUS, HTTP2_HEADER_CONTENT_TYPE } = http2.constants; const options = getOptionsSomehow(); const server = http2.createSecureServer(options); server.on('stream', (stream, headers, flags) => { const method = headers[HTTP2_HEADER_METHOD]; const path = headers[HTTP2_HEADER_PATH]; // ... stream.respond({ [HTTP2_HEADER_STATUS]: 200, [HTTP2_HEADER_CONTENT_TYPE]: 'text/plain; charset=utf-8' }); stream.write('hello '); stream.end('world'); });
'timeout'
The 'timeout'
event is emitted when there is no activity on the Server for a given number of milliseconds set using http2secureServer.setTimeout()
. Default: 2 minutes.
'unknownProtocol'
The 'unknownProtocol'
event is emitted when a connecting client fails to negotiate an allowed protocol (i.e. HTTP/2 or HTTP/1.1). The event handler receives the socket for handling. If no listener is registered for this event, the connection is terminated. See the Compatibility API.
server.close([callback])
callback
<Function>
Stops the server from establishing new sessions. This does not prevent new request streams from being created due to the persistent nature of HTTP/2 sessions. To gracefully shut down the server, call http2session.close()
on all active sessions.
If callback
is provided, it is not invoked until all active sessions have been closed, although the server has already stopped allowing new sessions. See tls.Server.close()
for more details.
server.setTimeout([msecs][, callback])
msecs
<number> Default: 120000
(2 minutes)callback
<Function>
Used to set the timeout value for http2 secure server requests, and sets a callback function that is called when there is no activity on the Http2SecureServer
after msecs
milliseconds.
The given callback is registered as a listener on the 'timeout'
event.
In case of no callback function were assigned, a new ERR_INVALID_CALLBACK
error will be thrown.
http2.createServer(options[, onRequestHandler])
options
<Object>
maxDeflateDynamicTableSize
<number> Sets the maximum dynamic table size for deflating header fields. Default: 4Kib
.maxSettings
<number> Sets the maximum number of settings entries per SETTINGS
frame. The minimum value allowed is 1
. Default: 32
.maxSessionMemory
<number> Sets the maximum memory that the Http2Session
is permitted to use. The value is expressed in terms of number of megabytes, e.g. 1
equal 1 megabyte. The minimum value allowed is 1
. This is a credit based limit, existing Http2Stream
s may cause this limit to be exceeded, but new Http2Stream
instances will be rejected while this limit is exceeded. The current number of Http2Stream
sessions, the current memory use of the header compression tables, current data queued to be sent, and unacknowledged PING
and SETTINGS
frames are all counted towards the current limit. Default: 10
.maxHeaderListPairs
<number> Sets the maximum number of header entries. This is similar to http.Server#maxHeadersCount
or http.ClientRequest#maxHeadersCount
. The minimum value is 4
. Default: 128
.maxOutstandingPings
<number> Sets the maximum number of outstanding, unacknowledged pings. Default: 10
.maxSendHeaderBlockLength
<number> Sets the maximum allowed size for a serialized, compressed block of headers. Attempts to send headers that exceed this limit will result in a 'frameError'
event being emitted and the stream being closed and destroyed.paddingStrategy
<number> The strategy used for determining the amount of padding to use for HEADERS
and DATA
frames. Default: http2.constants.PADDING_STRATEGY_NONE
. Value may be one of:
http2.constants.PADDING_STRATEGY_NONE
: Specifies that no padding is to be applied.http2.constants.PADDING_STRATEGY_MAX
: Specifies that the maximum amount of padding, as determined by the internal implementation, is to be applied.http2.constants.PADDING_STRATEGY_CALLBACK
: Specifies that the user provided options.selectPadding()
callback is to be used to determine the amount of padding.http2.constants.PADDING_STRATEGY_ALIGNED
: Will attempt to apply enough padding to ensure that the total frame length, including the 9-byte header, is a multiple of 8. For each frame, however, there is a maximum allowed number of padding bytes that is determined by current flow control state and settings. If this maximum is less than the calculated amount needed to ensure alignment, the maximum will be used and the total frame length will not necessarily be aligned at 8 bytes.peerMaxConcurrentStreams
<number> Sets the maximum number of concurrent streams for the remote peer as if a SETTINGS
frame had been received. Will be overridden if the remote peer sets its own value for maxConcurrentStreams
. Default: 100
.maxSessionInvalidFrames
<integer> Sets the maximum number of invalid frames that will be tolerated before the session is closed. Default: 1000
.maxSessionRejectedStreams
<integer> Sets the maximum number of rejected upon creation streams that will be tolerated before the session is closed. Each rejection is associated with an NGHTTP2_ENHANCE_YOUR_CALM
error that should tell the peer to not open any more streams, continuing to open streams is therefore regarded as a sign of a misbehaving peer. Default: 100
.selectPadding
<Function> When options.paddingStrategy
is equal to http2.constants.PADDING_STRATEGY_CALLBACK
, provides the callback function used to determine the padding. See Using options.selectPadding()
.settings
<HTTP/2 Settings Object> The initial settings to send to the remote peer upon connection.Http1IncomingMessage
<http.IncomingMessage> Specifies the IncomingMessage
class to used for HTTP/1 fallback. Useful for extending the original http.IncomingMessage
. Default: http.IncomingMessage
.Http1ServerResponse
<http.ServerResponse> Specifies the ServerResponse
class to used for HTTP/1 fallback. Useful for extending the original http.ServerResponse
. Default: http.ServerResponse
.Http2ServerRequest
<http2.Http2ServerRequest> Specifies the Http2ServerRequest
class to use. Useful for extending the original Http2ServerRequest
. Default: Http2ServerRequest
.Http2ServerResponse
<http2.Http2ServerResponse> Specifies the Http2ServerResponse
class to use. Useful for extending the original Http2ServerResponse
. Default: Http2ServerResponse
.net.createServer()
option can be provided.onRequestHandler
<Function> See Compatibility API
Returns a net.Server
instance that creates and manages Http2Session
instances.
Since there are no browsers known that support unencrypted HTTP/2, the use of http2.createSecureServer()
is necessary when communicating with browser clients.
const http2 = require('http2'); // Create an unencrypted HTTP/2 server. // Since there are no browsers known that support // unencrypted HTTP/2, the use of `http2.createSecureServer()` // is necessary when communicating with browser clients. const server = http2.createServer(); server.on('stream', (stream, headers) => { stream.respond({ 'content-type': 'text/html; charset=utf-8', ':status': 200 }); stream.end('<h1>Hello World</h1>'); }); server.listen(80);
http2.createSecureServer(options[, onRequestHandler])
options
<Object>
allowHTTP1
<boolean> Incoming client connections that do not support HTTP/2 will be downgraded to HTTP/1.x when set to true
. See the 'unknownProtocol'
event. See ALPN negotiation. Default: false
.maxDeflateDynamicTableSize
<number> Sets the maximum dynamic table size for deflating header fields. Default: 4Kib
.maxSettings
<number> Sets the maximum number of settings entries per SETTINGS
frame. The minimum value allowed is 1
. Default: 32
.maxSessionMemory
<number> Sets the maximum memory that the Http2Session
is permitted to use. The value is expressed in terms of number of megabytes, e.g. 1
equal 1 megabyte. The minimum value allowed is 1
. This is a credit based limit, existing Http2Stream
s may cause this limit to be exceeded, but new Http2Stream
instances will be rejected while this limit is exceeded. The current number of Http2Stream
sessions, the current memory use of the header compression tables, current data queued to be sent, and unacknowledged PING
and SETTINGS
frames are all counted towards the current limit. Default: 10
.maxHeaderListPairs
<number> Sets the maximum number of header entries. This is similar to http.Server#maxHeadersCount
or http.ClientRequest#maxHeadersCount
. The minimum value is 4
. Default: 128
.maxOutstandingPings
<number> Sets the maximum number of outstanding, unacknowledged pings. Default: 10
.maxSendHeaderBlockLength
<number> Sets the maximum allowed size for a serialized, compressed block of headers. Attempts to send headers that exceed this limit will result in a 'frameError'
event being emitted and the stream being closed and destroyed.paddingStrategy
<number> Strategy used for determining the amount of padding to use for HEADERS
and DATA
frames. Default: http2.constants.PADDING_STRATEGY_NONE
. Value may be one of:
http2.constants.PADDING_STRATEGY_NONE
: Specifies that no padding is to be applied.http2.constants.PADDING_STRATEGY_MAX
: Specifies that the maximum amount of padding, as determined by the internal implementation, is to be applied.http2.constants.PADDING_STRATEGY_CALLBACK
: Specifies that the user provided options.selectPadding()
callback is to be used to determine the amount of padding.http2.constants.PADDING_STRATEGY_ALIGNED
: Will attempt to apply enough padding to ensure that the total frame length, including the 9-byte header, is a multiple of 8. For each frame, however, there is a maximum allowed number of padding bytes that is determined by current flow control state and settings. If this maximum is less than the calculated amount needed to ensure alignment, the maximum will be used and the total frame length will not necessarily be aligned at 8 bytes.peerMaxConcurrentStreams
<number> Sets the maximum number of concurrent streams for the remote peer as if a SETTINGS
frame had been received. Will be overridden if the remote peer sets its own value for maxConcurrentStreams
. Default: 100
.maxSessionInvalidFrames
<integer> Sets the maximum number of invalid frames that will be tolerated before the session is closed. Default: 1000
.maxSessionRejectedStreams
<integer> Sets the maximum number of rejected upon creation streams that will be tolerated before the session is closed. Each rejection is associated with an NGHTTP2_ENHANCE_YOUR_CALM
error that should tell the peer to not open any more streams, continuing to open streams is therefore regarded as a sign of a misbehaving peer. Default: 100
.selectPadding
<Function> When options.paddingStrategy
is equal to http2.constants.PADDING_STRATEGY_CALLBACK
, provides the callback function used to determine the padding. See Using options.selectPadding()
.settings
<HTTP/2 Settings Object> The initial settings to send to the remote peer upon connection.tls.createServer()
options can be provided. For servers, the identity options (pfx
or key
/cert
) are usually required.origins
<string[]> An array of origin strings to send within an ORIGIN
frame immediately following creation of a new server Http2Session
.onRequestHandler
<Function> See Compatibility API
Returns a tls.Server
instance that creates and manages Http2Session
instances.
const http2 = require('http2'); const fs = require('fs'); const options = { key: fs.readFileSync('server-key.pem'), cert: fs.readFileSync('server-cert.pem') }; // Create a secure HTTP/2 server const server = http2.createSecureServer(options); server.on('stream', (stream, headers) => { stream.respond({ 'content-type': 'text/html; charset=utf-8', ':status': 200 }); stream.end('<h1>Hello World</h1>'); }); server.listen(80);
http2.connect(authority[, options][, listener])
authority
<string> | <URL> The remote HTTP/2 server to connect to. This must be in the form of a minimal, valid URL with the http://
or https://
prefix, host name, and IP port (if a non-default port is used). Userinfo (user ID and password), path, querystring, and fragment details in the URL will be ignored.options
<Object>
maxDeflateDynamicTableSize
<number> Sets the maximum dynamic table size for deflating header fields. Default: 4Kib
.maxSettings
<number> Sets the maximum number of settings entries per SETTINGS
frame. The minimum value allowed is 1
. Default: 32
.maxSessionMemory
<number> Sets the maximum memory that the Http2Session
is permitted to use. The value is expressed in terms of number of megabytes, e.g. 1
equal 1 megabyte. The minimum value allowed is 1
. This is a credit based limit, existing Http2Stream
s may cause this limit to be exceeded, but new Http2Stream
instances will be rejected while this limit is exceeded. The current number of Http2Stream
sessions, the current memory use of the header compression tables, current data queued to be sent, and unacknowledged PING
and SETTINGS
frames are all counted towards the current limit. Default: 10
.maxHeaderListPairs
<number> Sets the maximum number of header entries. This is similar to http.Server#maxHeadersCount
or http.ClientRequest#maxHeadersCount
. The minimum value is 1
. Default: 128
.maxOutstandingPings
<number> Sets the maximum number of outstanding, unacknowledged pings. Default: 10
.maxReservedRemoteStreams
<number> Sets the maximum number of reserved push streams the client will accept at any given time. Once the current number of currently reserved push streams exceeds reaches this limit, new push streams sent by the server will be automatically rejected. The minimum allowed value is 0. The maximum allowed value is 232-1. A negative value sets this option to the maximum allowed value. Default: 200
.maxSendHeaderBlockLength
<number> Sets the maximum allowed size for a serialized, compressed block of headers. Attempts to send headers that exceed this limit will result in a 'frameError'
event being emitted and the stream being closed and destroyed.paddingStrategy
<number> Strategy used for determining the amount of padding to use for HEADERS
and DATA
frames. Default: http2.constants.PADDING_STRATEGY_NONE
. Value may be one of:
http2.constants.PADDING_STRATEGY_NONE
: Specifies that no padding is to be applied.http2.constants.PADDING_STRATEGY_MAX
: Specifies that the maximum amount of padding, as determined by the internal implementation, is to be applied.http2.constants.PADDING_STRATEGY_CALLBACK
: Specifies that the user provided options.selectPadding()
callback is to be used to determine the amount of padding.http2.constants.PADDING_STRATEGY_ALIGNED
: Will attempt to apply enough padding to ensure that the total frame length, including the 9-byte header, is a multiple of 8. For each frame, however, there is a maximum allowed number of padding bytes that is determined by current flow control state and settings. If this maximum is less than the calculated amount needed to ensure alignment, the maximum will be used and the total frame length will not necessarily be aligned at 8 bytes.peerMaxConcurrentStreams
<number> Sets the maximum number of concurrent streams for the remote peer as if a SETTINGS
frame had been received. Will be overridden if the remote peer sets its own value for maxConcurrentStreams
. Default: 100
.selectPadding
<Function> When options.paddingStrategy
is equal to http2.constants.PADDING_STRATEGY_CALLBACK
, provides the callback function used to determine the padding. See Using options.selectPadding()
.protocol
<string> The protocol to connect with, if not set in the authority
. Value may be either 'http:'
or 'https:'
. Default: 'https:'
settings
<HTTP/2 Settings Object> The initial settings to send to the remote peer upon connection.createConnection
<Function> An optional callback that receives the URL
instance passed to connect
and the options
object, and returns any Duplex
stream that is to be used as the connection for this session.net.connect()
or tls.connect()
options can be provided.listener
<Function> Will be registered as a one-time listener of the 'connect'
event.Returns a ClientHttp2Session
instance.
const http2 = require('http2'); const client = http2.connect('https://localhost:1234'); /* Use the client */ client.close();
http2.constants
RST_STREAM
and GOAWAY
Value | Name | Constant |
---|---|---|
0x00 |
No Error | http2.constants.NGHTTP2_NO_ERROR |
0x01 |
Protocol Error | http2.constants.NGHTTP2_PROTOCOL_ERROR |
0x02 |
Internal Error | http2.constants.NGHTTP2_INTERNAL_ERROR |
0x03 |
Flow Control Error | http2.constants.NGHTTP2_FLOW_CONTROL_ERROR |
0x04 |
Settings Timeout | http2.constants.NGHTTP2_SETTINGS_TIMEOUT |
0x05 |
Stream Closed | http2.constants.NGHTTP2_STREAM_CLOSED |
0x06 |
Frame Size Error | http2.constants.NGHTTP2_FRAME_SIZE_ERROR |
0x07 |
Refused Stream | http2.constants.NGHTTP2_REFUSED_STREAM |
0x08 |
Cancel | http2.constants.NGHTTP2_CANCEL |
0x09 |
Compression Error | http2.constants.NGHTTP2_COMPRESSION_ERROR |
0x0a |
Connect Error | http2.constants.NGHTTP2_CONNECT_ERROR |
0x0b |
Enhance Your Calm | http2.constants.NGHTTP2_ENHANCE_YOUR_CALM |
0x0c |
Inadequate Security | http2.constants.NGHTTP2_INADEQUATE_SECURITY |
0x0d |
HTTP/1.1 Required | http2.constants.NGHTTP2_HTTP_1_1_REQUIRED |
The 'timeout'
event is emitted when there is no activity on the Server for a given number of milliseconds set using http2server.setTimeout()
.
http2.getDefaultSettings()
Returns an object containing the default settings for an Http2Session
instance. This method returns a new object instance every time it is called so instances returned may be safely modified for use.
http2.getPackedSettings([settings])
settings
<HTTP/2 Settings Object>
Returns a Buffer
instance containing serialized representation of the given HTTP/2 settings as specified in the HTTP/2 specification. This is intended for use with the HTTP2-Settings
header field.
const http2 = require('http2'); const packed = http2.getPackedSettings({ enablePush: false }); console.log(packed.toString('base64')); // Prints: AAIAAAAA
http2.getUnpackedSettings(buf)
buf
<Buffer> | <Uint8Array> The packed settings.Returns a HTTP/2 Settings Object containing the deserialized settings from the given Buffer
as generated by http2.getPackedSettings()
.
Headers are represented as own-properties on JavaScript objects. The property keys will be serialized to lower-case. Property values should be strings (if they are not they will be coerced to strings) or an Array
of strings (in order to send more than one value per header field).
const headers = { ':status': '200', 'content-type': 'text-plain', 'ABC': ['has', 'more', 'than', 'one', 'value'] }; stream.respond(headers);
Header objects passed to callback functions will have a null
prototype. This means that normal JavaScript object methods such as Object.prototype.toString()
and Object.prototype.hasOwnProperty()
will not work.
For incoming headers:
:status
header is converted to number
.:status
, :method
, :authority
, :scheme
, :path
, :protocol
, age
, authorization
, access-control-allow-credentials
, access-control-max-age
, access-control-request-method
, content-encoding
, content-language
, content-length
, content-location
, content-md5
, content-range
, content-type
, date
, dnt
, etag
, expires
, from
, if-match
, if-modified-since
, if-none-match
, if-range
, if-unmodified-since
, last-modified
, location
, max-forwards
, proxy-authorization
, range
, referer
,retry-after
, tk
, upgrade-insecure-requests
, user-agent
or x-content-type-options
are discarded.set-cookie
is always an array. Duplicates are added to the array.cookie
headers, the values are joined together with '; '.const http2 = require('http2'); const server = http2.createServer(); server.on('stream', (stream, headers) => { console.log(headers[':path']); console.log(headers.ABC); });
The http2.getDefaultSettings()
, http2.getPackedSettings()
, http2.createServer()
, http2.createSecureServer()
, http2session.settings()
, http2session.localSettings
, and http2session.remoteSettings
APIs either return or receive as input an object that defines configuration settings for an Http2Session
object. These objects are ordinary JavaScript objects containing the following properties.
headerTableSize
<number> Specifies the maximum number of bytes used for header compression. The minimum allowed value is 0. The maximum allowed value is 232-1. Default: 4096
.enablePush
<boolean> Specifies true
if HTTP/2 Push Streams are to be permitted on the Http2Session
instances. Default: true
.initialWindowSize
<number> Specifies the sender's initial window size in bytes for stream-level flow control. The minimum allowed value is 0. The maximum allowed value is 232-1. Default: 65535
.maxFrameSize
<number> Specifies the size in bytes of the largest frame payload. The minimum allowed value is 16,384. The maximum allowed value is 224-1. Default: 16384
.maxConcurrentStreams
<number> Specifies the maximum number of concurrent streams permitted on an Http2Session
. There is no default value which implies, at least theoretically, 232-1 streams may be open concurrently at any given time in an Http2Session
. The minimum value is 0. The maximum allowed value is 232-1. Default: 4294967295
.maxHeaderListSize
<number> Specifies the maximum size (uncompressed octets) of header list that will be accepted. The minimum allowed value is 0. The maximum allowed value is 232-1. Default: 65535
.maxHeaderSize
<number> Alias for maxHeaderListSize
.enableConnectProtocol
<boolean> Specifies true
if the "Extended Connect Protocol" defined by RFC 8441 is to be enabled. This setting is only meaningful if sent by the server. Once the enableConnectProtocol
setting has been enabled for a given Http2Session
, it cannot be disabled. Default: false
.All additional properties on the settings object are ignored.
options.selectPadding()
When options.paddingStrategy
is equal to http2.constants.PADDING_STRATEGY_CALLBACK
, the HTTP/2 implementation will consult the options.selectPadding()
callback function, if provided, to determine the specific amount of padding to use per HEADERS
and DATA
frame.
The options.selectPadding()
function receives two numeric arguments, frameLen
and maxFrameLen
and must return a number N
such that frameLen <= N <= maxFrameLen
.
const http2 = require('http2'); const server = http2.createServer({ paddingStrategy: http2.constants.PADDING_STRATEGY_CALLBACK, selectPadding(frameLen, maxFrameLen) { return maxFrameLen; } });
The options.selectPadding()
function is invoked once for every HEADERS
and DATA
frame. This has a definite noticeable impact on performance.
There are several types of error conditions that may arise when using the http2
module:
Validation errors occur when an incorrect argument, option, or setting value is passed in. These will always be reported by a synchronous throw
.
State errors occur when an action is attempted at an incorrect time (for instance, attempting to send data on a stream after it has closed). These will be reported using either a synchronous throw
or via an 'error'
event on the Http2Stream
, Http2Session
or HTTP/2 Server objects, depending on where and when the error occurs.
Internal errors occur when an HTTP/2 session fails unexpectedly. These will be reported via an 'error'
event on the Http2Session
or HTTP/2 Server objects.
Protocol errors occur when various HTTP/2 protocol constraints are violated. These will be reported using either a synchronous throw
or via an 'error'
event on the Http2Stream
, Http2Session
or HTTP/2 Server objects, depending on where and when the error occurs.
The HTTP/2 implementation applies stricter handling of invalid characters in HTTP header names and values than the HTTP/1 implementation.
Header field names are case-insensitive and are transmitted over the wire strictly as lower-case strings. The API provided by Node.js allows header names to be set as mixed-case strings (e.g. Content-Type
) but will convert those to lower-case (e.g. content-type
) upon transmission.
Header field-names must only contain one or more of the following ASCII characters: a
-z
, A
-Z
, 0
-9
, !
, #
, $
, %
, &
, '
, *
, +
, -
, .
, ^
, _
, `
(backtick), |
, and ~
.
Using invalid characters within an HTTP header field name will cause the stream to be closed with a protocol error being reported.
Header field values are handled with more leniency but should not contain new-line or carriage return characters and should be limited to US-ASCII characters, per the requirements of the HTTP specification.
To receive pushed streams on the client, set a listener for the 'stream'
event on the ClientHttp2Session
:
const http2 = require('http2'); const client = http2.connect('http://localhost'); client.on('stream', (pushedStream, requestHeaders) => { pushedStream.on('push', (responseHeaders) => { // Process response headers }); pushedStream.on('data', (chunk) => { /* handle pushed data */ }); }); const req = client.request({ ':path': '/' });
CONNECT
methodThe CONNECT
method is used to allow an HTTP/2 server to be used as a proxy for TCP/IP connections.
A simple TCP Server:
const net = require('net'); const server = net.createServer((socket) => { let name = ''; socket.setEncoding('utf8'); socket.on('data', (chunk) => name += chunk); socket.on('end', () => socket.end(`hello ${name}`)); }); server.listen(8000);
An HTTP/2 CONNECT proxy:
const http2 = require('http2'); const { NGHTTP2_REFUSED_STREAM } = http2.constants; const net = require('net'); const proxy = http2.createServer(); proxy.on('stream', (stream, headers) => { if (headers[':method'] !== 'CONNECT') { // Only accept CONNECT requests stream.close(NGHTTP2_REFUSED_STREAM); return; } const auth = new URL(`tcp://${headers[':authority']}`); // It's a very good idea to verify that hostname and port are // things this proxy should be connecting to. const socket = net.connect(auth.port, auth.hostname, () => { stream.respond(); socket.pipe(stream); stream.pipe(socket); }); socket.on('error', (error) => { stream.close(http2.constants.NGHTTP2_CONNECT_ERROR); }); }); proxy.listen(8001);
An HTTP/2 CONNECT client:
const http2 = require('http2'); const client = http2.connect('http://localhost:8001'); // Must not specify the ':path' and ':scheme' headers // for CONNECT requests or an error will be thrown. const req = client.request({ ':method': 'CONNECT', ':authority': `localhost:${port}` }); req.on('response', (headers) => { console.log(headers[http2.constants.HTTP2_HEADER_STATUS]); }); let data = ''; req.setEncoding('utf8'); req.on('data', (chunk) => data += chunk); req.on('end', () => { console.log(`The server says: ${data}`); client.close(); }); req.end('Jane');
CONNECT
protocolRFC 8441 defines an "Extended CONNECT Protocol" extension to HTTP/2 that may be used to bootstrap the use of an Http2Stream
using the CONNECT
method as a tunnel for other communication protocols (such as WebSockets).
The use of the Extended CONNECT Protocol is enabled by HTTP/2 servers by using the enableConnectProtocol
setting:
const http2 = require('http2'); const settings = { enableConnectProtocol: true }; const server = http2.createServer({ settings });
Once the client receives the SETTINGS
frame from the server indicating that the extended CONNECT may be used, it may send CONNECT
requests that use the ':protocol'
HTTP/2 pseudo-header:
const http2 = require('http2'); const client = http2.connect('http://localhost:8080'); client.on('remoteSettings', (settings) => { if (settings.enableConnectProtocol) { const req = client.request({ ':method': 'CONNECT', ':protocol': 'foo' }); // ... } });
The Compatibility API has the goal of providing a similar developer experience of HTTP/1 when using HTTP/2, making it possible to develop applications that support both HTTP/1 and HTTP/2. This API targets only the public API of the HTTP/1. However many modules use internal methods or state, and those are not supported as it is a completely different implementation.
The following example creates an HTTP/2 server using the compatibility API:
const http2 = require('http2'); const server = http2.createServer((req, res) => { res.setHeader('Content-Type', 'text/html'); res.setHeader('X-Foo', 'bar'); res.writeHead(200, { 'Content-Type': 'text/plain; charset=utf-8' }); res.end('ok'); });
In order to create a mixed HTTPS and HTTP/2 server, refer to the ALPN negotiation section. Upgrading from non-tls HTTP/1 servers is not supported.
The HTTP/2 compatibility API is composed of Http2ServerRequest
and Http2ServerResponse
. They aim at API compatibility with HTTP/1, but they do not hide the differences between the protocols. As an example, the status message for HTTP codes is ignored.
ALPN negotiation allows supporting both HTTPS and HTTP/2 over the same socket. The req
and res
objects can be either HTTP/1 or HTTP/2, and an application must restrict itself to the public API of HTTP/1, and detect if it is possible to use the more advanced features of HTTP/2.
The following example creates a server that supports both protocols:
const { createSecureServer } = require('http2'); const { readFileSync } = require('fs'); const cert = readFileSync('./cert.pem'); const key = readFileSync('./key.pem'); const server = createSecureServer( { cert, key, allowHTTP1: true }, onRequest ).listen(4443); function onRequest(req, res) { // Detects if it is a HTTPS request or HTTP/2 const { socket: { alpnProtocol } } = req.httpVersion === '2.0' ? req.stream.session : req; res.writeHead(200, { 'content-type': 'application/json' }); res.end(JSON.stringify({ alpnProtocol, httpVersion: req.httpVersion })); }
The 'request'
event works identically on both HTTPS and HTTP/2.
http2.Http2ServerRequest
A Http2ServerRequest
object is created by http2.Server
or http2.SecureServer
and passed as the first argument to the 'request'
event. It may be used to access a request status, headers, and data.
'aborted'
The 'aborted'
event is emitted whenever a Http2ServerRequest
instance is abnormally aborted in mid-communication.
The 'aborted'
event will only be emitted if the Http2ServerRequest
writable side has not been ended.
'close'
Indicates that the underlying Http2Stream
was closed. Just like 'end'
, this event occurs only once per response.
request.aborted
The request.aborted
property will be true
if the request has been aborted.
request.authority
The request authority pseudo header field. It can also be accessed via req.headers[':authority']
.
request.complete
The request.complete
property will be true
if the request has been completed, aborted, or destroyed.
request.destroy([error])
error
<Error>
Calls destroy()
on the Http2Stream
that received the Http2ServerRequest
. If error
is provided, an 'error'
event is emitted and error
is passed as an argument to any listeners on the event.
It does nothing if the stream was already destroyed.
request.headers
The request/response headers object.
Key-value pairs of header names and values. Header names are lower-cased.
// Prints something like: // // { 'user-agent': 'curl/7.22.0', // host: '127.0.0.1:8000', // accept: '*/*' } console.log(request.headers);
In HTTP/2, the request path, host name, protocol, and method are represented as special headers prefixed with the :
character (e.g. ':path'
). These special headers will be included in the request.headers
object. Care must be taken not to inadvertently modify these special headers or errors may occur. For instance, removing all headers from the request will cause errors to occur:
removeAllHeaders(request.headers); assert(request.url); // Fails because the :path header has been removed
request.httpVersion
In case of server request, the HTTP version sent by the client. In the case of client response, the HTTP version of the connected-to server. Returns '2.0'
.
Also message.httpVersionMajor
is the first integer and message.httpVersionMinor
is the second.
request.method
The request method as a string. Read-only. Examples: 'GET'
, 'DELETE'
.
request.rawHeaders
The raw request/response headers list exactly as they were received.
The keys and values are in the same list. It is not a list of tuples. So, the even-numbered offsets are key values, and the odd-numbered offsets are the associated values.
Header names are not lowercased, and duplicates are not merged.
// Prints something like: // // [ 'user-agent', // 'this is invalid because there can be only one', // 'User-Agent', // 'curl/7.22.0', // 'Host', // '127.0.0.1:8000', // 'ACCEPT', // '*/*' ] console.log(request.rawHeaders);
request.rawTrailers
The raw request/response trailer keys and values exactly as they were received. Only populated at the 'end'
event.
request.scheme
The request scheme pseudo header field indicating the scheme portion of the target URL.
request.setTimeout(msecs, callback)
msecs
<number>
callback
<Function>
Sets the Http2Stream
's timeout value to msecs
. If a callback is provided, then it is added as a listener on the 'timeout'
event on the response object.
If no 'timeout'
listener is added to the request, the response, or the server, then Http2Stream
s are destroyed when they time out. If a handler is assigned to the request, the response, or the server's 'timeout'
events, timed out sockets must be handled explicitly.
request.socket
Returns a Proxy
object that acts as a net.Socket
(or tls.TLSSocket
) but applies getters, setters, and methods based on HTTP/2 logic.
destroyed
, readable
, and writable
properties will be retrieved from and set on request.stream
.
destroy
, emit
, end
, on
and once
methods will be called on request.stream
.
setTimeout
method will be called on request.stream.session
.
pause
, read
, resume
, and write
will throw an error with code ERR_HTTP2_NO_SOCKET_MANIPULATION
. See Http2Session
and Sockets for more information.
All other interactions will be routed directly to the socket. With TLS support, use request.socket.getPeerCertificate()
to obtain the client's authentication details.
request.stream
The Http2Stream
object backing the request.
request.trailers
The request/response trailers object. Only populated at the 'end'
event.
request.url
Request URL string. This contains only the URL that is present in the actual HTTP request. If the request is:
GET /status?name=ryan HTTP/1.1 Accept: text/plain
Then request.url
will be:
'/status?name=ryan'
To parse the url into its parts, require('url').parse(request.url)
can be used:
$ node > require('url').parse('/status?name=ryan') Url { protocol: null, slashes: null, auth: null, host: null, port: null, hostname: null, hash: null, search: '?name=ryan', query: 'name=ryan', pathname: '/status', path: '/status?name=ryan', href: '/status?name=ryan' }
To obtain the parameters from the query string, use the require('querystring').parse()
function or pass true
as the second argument to require('url').parse()
.
$ node > require('url').parse('/status?name=ryan', true) Url { protocol: null, slashes: null, auth: null, host: null, port: null, hostname: null, hash: null, search: '?name=ryan', query: { name: 'ryan' }, pathname: '/status', path: '/status?name=ryan', href: '/status?name=ryan' }
http2.Http2ServerResponse
This object is created internally by an HTTP server, not by the user. It is passed as the second parameter to the 'request'
event.
'close'
Indicates that the underlying Http2Stream
was terminated before response.end()
was called or able to flush.
'finish'
Emitted when the response has been sent. More specifically, this event is emitted when the last segment of the response headers and body have been handed off to the HTTP/2 multiplexing for transmission over the network. It does not imply that the client has received anything yet.
After this event, no more events will be emitted on the response object.
response.addTrailers(headers)
headers
<Object>
This method adds HTTP trailing headers (a header but at the end of the message) to the response.
Attempting to set a header field name or value that contains invalid characters will result in a TypeError
being thrown.
response.connection
See response.socket
.
response.end([data[, encoding]][, callback])
data
<string> | <Buffer> | <Uint8Array>
encoding
<string>
callback
<Function>
This method signals to the server that all of the response headers and body have been sent; that server should consider this message complete. The method, response.end()
, MUST be called on each response.
If data
is specified, it is equivalent to calling response.write(data, encoding)
followed by response.end(callback)
.
If callback
is specified, it will be called when the response stream is finished.
response.finished
response.writableEnded
.Boolean value that indicates whether the response has completed. Starts as false
. After response.end()
executes, the value will be true
.
response.getHeader(name)
Reads out a header that has already been queued but not sent to the client. The name is case-insensitive.
const contentType = response.getHeader('content-type');
response.getHeaderNames()
Returns an array containing the unique names of the current outgoing headers. All header names are lowercase.
response.setHeader('Foo', 'bar'); response.setHeader('Set-Cookie', ['foo=bar', 'bar=baz']); const headerNames = response.getHeaderNames(); // headerNames === ['foo', 'set-cookie']
response.getHeaders()
Returns a shallow copy of the current outgoing headers. Since a shallow copy is used, array values may be mutated without additional calls to various header-related http module methods. The keys of the returned object are the header names and the values are the respective header values. All header names are lowercase.
The object returned by the response.getHeaders()
method does not prototypically inherit from the JavaScript Object
. This means that typical Object
methods such as obj.toString()
, obj.hasOwnProperty()
, and others are not defined and will not work.
response.setHeader('Foo', 'bar'); response.setHeader('Set-Cookie', ['foo=bar', 'bar=baz']); const headers = response.getHeaders(); // headers === { foo: 'bar', 'set-cookie': ['foo=bar', 'bar=baz'] }
response.hasHeader(name)
Returns true
if the header identified by name
is currently set in the outgoing headers. The header name matching is case-insensitive.
const hasContentType = response.hasHeader('content-type');
response.headersSent
True if headers were sent, false otherwise (read-only).
response.removeHeader(name)
name
<string>
Removes a header that has been queued for implicit sending.
response.removeHeader('Content-Encoding');
response.sendDate
When true, the Date header will be automatically generated and sent in the response if it is not already present in the headers. Defaults to true.
This should only be disabled for testing; HTTP requires the Date header in responses.
response.setHeader(name, value)
name
<string>
value
<string> | <string[]>
Sets a single header value for implicit headers. If this header already exists in the to-be-sent headers, its value will be replaced. Use an array of strings here to send multiple headers with the same name.
response.setHeader('Content-Type', 'text/html; charset=utf-8');
or
response.setHeader('Set-Cookie', ['type=ninja', 'language=javascript']);
Attempting to set a header field name or value that contains invalid characters will result in a TypeError
being thrown.
When headers have been set with response.setHeader()
, they will be merged with any headers passed to response.writeHead()
, with the headers passed to response.writeHead()
given precedence.
// Returns content-type = text/plain const server = http2.createServer((req, res) => { res.setHeader('Content-Type', 'text/html; charset=utf-8'); res.setHeader('X-Foo', 'bar'); res.writeHead(200, { 'Content-Type': 'text/plain; charset=utf-8' }); res.end('ok'); });
response.setTimeout(msecs[, callback])
msecs
<number>
callback
<Function>
Sets the Http2Stream
's timeout value to msecs
. If a callback is provided, then it is added as a listener on the 'timeout'
event on the response object.
If no 'timeout'
listener is added to the request, the response, or the server, then Http2Stream
s are destroyed when they time out. If a handler is assigned to the request, the response, or the server's 'timeout'
events, timed out sockets must be handled explicitly.
response.socket
Returns a Proxy
object that acts as a net.Socket
(or tls.TLSSocket
) but applies getters, setters, and methods based on HTTP/2 logic.
destroyed
, readable
, and writable
properties will be retrieved from and set on response.stream
.
destroy
, emit
, end
, on
and once
methods will be called on response.stream
.
setTimeout
method will be called on response.stream.session
.
pause
, read
, resume
, and write
will throw an error with code ERR_HTTP2_NO_SOCKET_MANIPULATION
. See Http2Session
and Sockets for more information.
All other interactions will be routed directly to the socket.
const http2 = require('http2'); const server = http2.createServer((req, res) => { const ip = req.socket.remoteAddress; const port = req.socket.remotePort; res.end(`Your IP address is ${ip} and your source port is ${port}.`); }).listen(3000);
response.statusCode
When using implicit headers (not calling response.writeHead()
explicitly), this property controls the status code that will be sent to the client when the headers get flushed.
response.statusCode = 404;
After response header was sent to the client, this property indicates the status code which was sent out.
response.statusMessage
Status message is not supported by HTTP/2 (RFC 7540 8.1.2.4). It returns an empty string.
response.stream
The Http2Stream
object backing the response.
response.writableEnded
Is true
after response.end()
has been called. This property does not indicate whether the data has been flushed, for this use writable.writableFinished
instead.
response.write(chunk[, encoding][, callback])
chunk
<string> | <Buffer> | <Uint8Array>
encoding
<string>
callback
<Function>
If this method is called and response.writeHead()
has not been called, it will switch to implicit header mode and flush the implicit headers.
This sends a chunk of the response body. This method may be called multiple times to provide successive parts of the body.
In the http
module, the response body is omitted when the request is a HEAD request. Similarly, the 204
and 304
responses must not include a message body.
chunk
can be a string or a buffer. If chunk
is a string, the second parameter specifies how to encode it into a byte stream. By default the encoding
is 'utf8'
. callback
will be called when this chunk of data is flushed.
This is the raw HTTP body and has nothing to do with higher-level multi-part body encodings that may be used.
The first time response.write()
is called, it will send the buffered header information and the first chunk of the body to the client. The second time response.write()
is called, Node.js assumes data will be streamed, and sends the new data separately. That is, the response is buffered up to the first chunk of the body.
Returns true
if the entire data was flushed successfully to the kernel buffer. Returns false
if all or part of the data was queued in user memory. 'drain'
will be emitted when the buffer is free again.
response.writeContinue()
Sends a status 100 Continue
to the client, indicating that the request body should be sent. See the 'checkContinue'
event on Http2Server
and Http2SecureServer
.
response.writeHead(statusCode[, statusMessage][, headers])
statusCode
<number>
statusMessage
<string>
headers
<Object>
Sends a response header to the request. The status code is a 3-digit HTTP status code, like 404
. The last argument, headers
, are the response headers.
Returns a reference to the Http2ServerResponse
, so that calls can be chained.
For compatibility with HTTP/1, a human-readable statusMessage
may be passed as the second argument. However, because the statusMessage
has no meaning within HTTP/2, the argument will have no effect and a process warning will be emitted.
const body = 'hello world'; response.writeHead(200, { 'Content-Length': Buffer.byteLength(body), 'Content-Type': 'text/plain; charset=utf-8' });
Content-Length
is given in bytes not characters. The Buffer.byteLength()
API may be used to determine the number of bytes in a given encoding. On outbound messages, Node.js does not check if Content-Length and the length of the body being transmitted are equal or not. However, when receiving messages, Node.js will automatically reject messages when the Content-Length
does not match the actual payload size.
This method may be called at most one time on a message before response.end()
is called.
If response.write()
or response.end()
are called before calling this, the implicit/mutable headers will be calculated and call this function.
When headers have been set with response.setHeader()
, they will be merged with any headers passed to response.writeHead()
, with the headers passed to response.writeHead()
given precedence.
// Returns content-type = text/plain const server = http2.createServer((req, res) => { res.setHeader('Content-Type', 'text/html; charset=utf-8'); res.setHeader('X-Foo', 'bar'); res.writeHead(200, { 'Content-Type': 'text/plain; charset=utf-8' }); res.end('ok'); });
Attempting to set a header field name or value that contains invalid characters will result in a TypeError
being thrown.
response.createPushResponse(headers, callback)
headers
<HTTP/2 Headers Object> An object describing the headerscallback
<Function> Called once http2stream.pushStream()
is finished, or either when the attempt to create the pushed Http2Stream
has failed or has been rejected, or the state of Http2ServerRequest
is closed prior to calling the http2stream.pushStream()
method
err
<Error>
stream
<ServerHttp2Stream> The newly-created ServerHttp2Stream
objectCall http2stream.pushStream()
with the given headers, and wrap the given Http2Stream
on a newly created Http2ServerResponse
as the callback parameter if successful. When Http2ServerRequest
is closed, the callback is called with an error ERR_HTTP2_INVALID_STREAM
.
The Performance Observer API can be used to collect basic performance metrics for each Http2Session
and Http2Stream
instance.
const { PerformanceObserver } = require('perf_hooks'); const obs = new PerformanceObserver((items) => { const entry = items.getEntries()[0]; console.log(entry.entryType); // prints 'http2' if (entry.name === 'Http2Session') { // Entry contains statistics about the Http2Session } else if (entry.name === 'Http2Stream') { // Entry contains statistics about the Http2Stream } }); obs.observe({ entryTypes: ['http2'] });
The entryType
property of the PerformanceEntry
will be equal to 'http2'
.
The name
property of the PerformanceEntry
will be equal to either 'Http2Stream'
or 'Http2Session'
.
If name
is equal to Http2Stream
, the PerformanceEntry
will contain the following additional properties:
bytesRead
<number> The number of DATA
frame bytes received for this Http2Stream
.bytesWritten
<number> The number of DATA
frame bytes sent for this Http2Stream
.id
<number> The identifier of the associated Http2Stream
timeToFirstByte
<number> The number of milliseconds elapsed between the PerformanceEntry
startTime
and the reception of the first DATA
frame.timeToFirstByteSent
<number> The number of milliseconds elapsed between the PerformanceEntry
startTime
and sending of the first DATA
frame.timeToFirstHeader
<number> The number of milliseconds elapsed between the PerformanceEntry
startTime
and the reception of the first header.If name
is equal to Http2Session
, the PerformanceEntry
will contain the following additional properties:
bytesRead
<number> The number of bytes received for this Http2Session
.bytesWritten
<number> The number of bytes sent for this Http2Session
.framesReceived
<number> The number of HTTP/2 frames received by the Http2Session
.framesSent
<number> The number of HTTP/2 frames sent by the Http2Session
.maxConcurrentStreams
<number> The maximum number of streams concurrently open during the lifetime of the Http2Session
.pingRTT
<number> The number of milliseconds elapsed since the transmission of a PING
frame and the reception of its acknowledgment. Only present if a PING
frame has been sent on the Http2Session
.streamAverageDuration
<number> The average duration (in milliseconds) for all Http2Stream
instances.streamCount
<number> The number of Http2Stream
instances processed by the Http2Session
.type
<string> Either 'server'
or 'client'
to identify the type of Http2Session
.
© Joyent, Inc. and other Node contributors
Licensed under the MIT License.
Node.js is a trademark of Joyent, Inc. and is used with its permission.
We are not endorsed by or affiliated with Joyent.
https://nodejs.org/dist/latest-v12.x/docs/api/http2.html