W3cubDocs

/PointCloudLibrary

Detailed Description

Overview

The pcl_features library contains data structures and mechanisms for 3D feature estimation from point cloud data. 3D features are representations at a certain 3D point or position in space, which describe geometrical patterns based on the information available around the point. The data space selected around the query point is usually referred as the k-neighborhood.

The following figure shows a simple example of a selected query point, and its selected k-neighborhood.

An example of two of the most widely used geometric point features are the underlying surface's estimated curvature and normal at a query point p. Both of them are considered local features, as they characterize a point using the information provided by its k closest point neighbors. For determining these neighbors efficiently, the input dataset is usually split into smaller chunks using spatial decomposition techniques such as octrees or kD-trees (see the figure below - left: kD-tree, right: octree), and then closest point searches are performed in that space. Depending on the application one can opt for either determining a fixed number of k points in the vicinity of p, or all points which are found inside of a sphere of radius r centered at p. Unarguably, one the easiest methods for estimating the surface normals and curvature changes at a point p is to perform an eigendecomposition (i.e. compute the eigenvectors and eigenvalues) of the k-neighborhood point surface patch. Thus, the eigenvector corresponding to the smallest eigenvalue will approximate the surface normal n at point p, while the surface curvature change will be estimated from the eigenvalues as:

$\frac{\lambda_0}{\lambda_0 + \lambda_1 + \lambda_2}$, where $\lambda_0 < \lambda_1 < \lambda_2$.

Please visit http://www.pointclouds.org for more information.

Requirements

Classes

class pcl::ShapeContext3DEstimation< PointInT, PointNT, PointOutT >
ShapeContext3DEstimation implements the 3D shape context descriptor as described in: More...
class pcl::BOARDLocalReferenceFrameEstimation< PointInT, PointNT, PointOutT >
BOARDLocalReferenceFrameEstimation implements the BOrder Aware Repeatable Directions algorithm for local reference frame estimation as described here: More...
class pcl::BoundaryEstimation< PointInT, PointNT, PointOutT >
BoundaryEstimation estimates whether a set of points is lying on surface boundaries using an angle criterion. More...
class pcl::BRISK2DEstimation< PointInT, PointOutT, KeypointT, IntensityT >
Implementation of the BRISK-descriptor, based on the original code and paper reference by. More...
class pcl::CRHEstimation< PointInT, PointNT, PointOutT >
CRHEstimation estimates the Camera Roll Histogram (CRH) descriptor for a given point cloud dataset containing XYZ data and normals, as presented in: More...
class pcl::CVFHEstimation< PointInT, PointNT, PointOutT >
CVFHEstimation estimates the Clustered Viewpoint Feature Histogram (CVFH) descriptor for a given point cloud dataset containing XYZ data and normals, as presented in: More...
class pcl::DifferenceOfNormalsEstimation< PointInT, PointNT, PointOutT >
A Difference of Normals (DoN) scale filter implementation for point cloud data. More...
class pcl::ESFEstimation< PointInT, PointOutT >
ESFEstimation estimates the ensemble of shape functions descriptors for a given point cloud dataset containing points. More...
class pcl::Feature< PointInT, PointOutT >
Feature represents the base feature class. More...
class pcl::FeatureWithLocalReferenceFrames< PointInT, PointRFT >
FeatureWithLocalReferenceFrames provides a public interface for descriptor extractor classes which need a local reference frame at each input keypoint. More...
class pcl::FLARELocalReferenceFrameEstimation< PointInT, PointNT, PointOutT, SignedDistanceT >
FLARELocalReferenceFrameEstimation implements the Fast LocAl Reference framE algorithm for local reference frame estimation as described here: More...
class pcl::FPFHEstimation< PointInT, PointNT, PointOutT >
FPFHEstimation estimates the Fast Point Feature Histogram (FPFH) descriptor for a given point cloud dataset containing points and normals. More...
class pcl::FPFHEstimationOMP< PointInT, PointNT, PointOutT >
FPFHEstimationOMP estimates the Fast Point Feature Histogram (FPFH) descriptor for a given point cloud dataset containing points and normals, in parallel, using the OpenMP standard. More...
class pcl::GASDEstimation< PointInT, PointOutT >
GASDEstimation estimates the Globally Aligned Spatial Distribution (GASD) descriptor for a given point cloud dataset given XYZ data. More...
class pcl::GASDColorEstimation< PointInT, PointOutT >
GASDColorEstimation estimates the Globally Aligned Spatial Distribution (GASD) descriptor for a given point cloud dataset given XYZ and RGB data. More...
class pcl::GFPFHEstimation< PointInT, PointLT, PointOutT >
GFPFHEstimation estimates the Global Fast Point Feature Histogram (GFPFH) descriptor for a given point cloud dataset containing points and labels. More...
class pcl::GRSDEstimation< PointInT, PointNT, PointOutT >
GRSDEstimation estimates the Global Radius-based Surface Descriptor (GRSD) for a given point cloud dataset containing points and normals. More...
class pcl::IntensityGradientEstimation< PointInT, PointNT, PointOutT, IntensitySelectorT >
IntensityGradientEstimation estimates the intensity gradient for a point cloud that contains position and intensity values. More...
class pcl::IntensitySpinEstimation< PointInT, PointOutT >
IntensitySpinEstimation estimates the intensity-domain spin image descriptors for a given point cloud dataset containing points and intensity. More...
class pcl::MomentInvariantsEstimation< PointInT, PointOutT >
MomentInvariantsEstimation estimates the 3 moment invariants (j1, j2, j3) at each 3D point. More...
class pcl::Narf
NARF (Normal Aligned Radial Features) is a point feature descriptor type for 3D data. More...
class pcl::NarfDescriptor
Computes NARF feature descriptors for points in a range image See B. More...
class pcl::NormalEstimation< PointInT, PointOutT >
NormalEstimation estimates local surface properties (surface normals and curvatures)at each 3D point. More...
class pcl::NormalEstimationOMP< PointInT, PointOutT >
NormalEstimationOMP estimates local surface properties at each 3D point, such as surface normals and curvatures, in parallel, using the OpenMP standard. More...
class pcl::OURCVFHEstimation< PointInT, PointNT, PointOutT >
OURCVFHEstimation estimates the Oriented, Unique and Repetable Clustered Viewpoint Feature Histogram (CVFH) descriptor for a given point cloud dataset given XYZ data and normals, as presented in: More...
class pcl::PFHEstimation< PointInT, PointNT, PointOutT >
PFHEstimation estimates the Point Feature Histogram (PFH) descriptor for a given point cloud dataset containing points and normals. More...
class pcl::PrincipalCurvaturesEstimation< PointInT, PointNT, PointOutT >
PrincipalCurvaturesEstimation estimates the directions (eigenvectors) and magnitudes (eigenvalues) of principal surface curvatures for a given point cloud dataset containing points and normals. More...
class pcl::RangeImageBorderExtractor
Extract obstacle borders from range images, meaning positions where there is a transition from foreground to background. More...
class pcl::RIFTEstimation< PointInT, GradientT, PointOutT >
RIFTEstimation estimates the Rotation Invariant Feature Transform descriptors for a given point cloud dataset containing points and intensity. More...
class pcl::RSDEstimation< PointInT, PointNT, PointOutT >
RSDEstimation estimates the Radius-based Surface Descriptor (minimal and maximal radius of the local surface's curves) for a given point cloud dataset containing points and normals. More...
class pcl::SHOTEstimationBase< PointInT, PointNT, PointOutT, PointRFT >
SHOTEstimation estimates the Signature of Histograms of OrienTations (SHOT) descriptor for a given point cloud dataset containing points and normals. More...
class pcl::SHOTEstimation< PointInT, PointNT, PointOutT, PointRFT >
SHOTEstimation estimates the Signature of Histograms of OrienTations (SHOT) descriptor for a given point cloud dataset containing points and normals. More...
class pcl::SHOTColorEstimation< PointInT, PointNT, PointOutT, PointRFT >
SHOTColorEstimation estimates the Signature of Histograms of OrienTations (SHOT) descriptor for a given point cloud dataset containing points, normals and colors. More...
class pcl::SHOTLocalReferenceFrameEstimation< PointInT, PointOutT >
SHOTLocalReferenceFrameEstimation estimates the Local Reference Frame used in the calculation of the (SHOT) descriptor. More...
class pcl::SHOTLocalReferenceFrameEstimationOMP< PointInT, PointOutT >
SHOTLocalReferenceFrameEstimation estimates the Local Reference Frame used in the calculation of the (SHOT) descriptor. More...
class pcl::SHOTEstimationOMP< PointInT, PointNT, PointOutT, PointRFT >
SHOTEstimationOMP estimates the Signature of Histograms of OrienTations (SHOT) descriptor for a given point cloud dataset containing points and normals, in parallel, using the OpenMP standard. More...
class pcl::SHOTColorEstimationOMP< PointInT, PointNT, PointOutT, PointRFT >
SHOTColorEstimationOMP estimates the Signature of Histograms of OrienTations (SHOT) descriptor for a given point cloud dataset containing points, normals and colors, in parallel, using the OpenMP standard. More...
class pcl::SpinImageEstimation< PointInT, PointNT, PointOutT >
Estimates spin-image descriptors in the given input points. More...
class pcl::UniqueShapeContext< PointInT, PointOutT, PointRFT >
UniqueShapeContext implements the Unique Shape Context Descriptor described here: More...
class pcl::VFHEstimation< PointInT, PointNT, PointOutT >
VFHEstimation estimates the Viewpoint Feature Histogram (VFH) descriptor for a given point cloud dataset containing points and normals. More...

Functions

void pcl::solvePlaneParameters (const Eigen::Matrix3f &covariance_matrix, const Eigen::Vector4f &point, Eigen::Vector4f &plane_parameters, float &curvature)
Solve the eigenvalues and eigenvectors of a given 3x3 covariance matrix, and estimate the least-squares plane normal and surface curvature. More...
void pcl::solvePlaneParameters (const Eigen::Matrix3f &covariance_matrix, float &nx, float &ny, float &nz, float &curvature)
Solve the eigenvalues and eigenvectors of a given 3x3 covariance matrix, and estimate the least-squares plane normal and surface curvature. More...
template<typename PointT >
bool pcl::computePointNormal (const pcl::PointCloud< PointT > &cloud, Eigen::Vector4f &plane_parameters, float &curvature)
Compute the Least-Squares plane fit for a given set of points, and return the estimated plane parameters together with the surface curvature. More...
template<typename PointT >
bool pcl::computePointNormal (const pcl::PointCloud< PointT > &cloud, const pcl::Indices &indices, Eigen::Vector4f &plane_parameters, float &curvature)
Compute the Least-Squares plane fit for a given set of points, using their indices, and return the estimated plane parameters together with the surface curvature. More...
template<typename PointT , typename Scalar >
void pcl::flipNormalTowardsViewpoint (const PointT &point, float vp_x, float vp_y, float vp_z, Eigen::Matrix< Scalar, 4, 1 > &normal)
Flip (in place) the estimated normal of a point towards a given viewpoint. More...
template<typename PointT , typename Scalar >
void pcl::flipNormalTowardsViewpoint (const PointT &point, float vp_x, float vp_y, float vp_z, Eigen::Matrix< Scalar, 3, 1 > &normal)
Flip (in place) the estimated normal of a point towards a given viewpoint. More...
template<typename PointT >
void pcl::flipNormalTowardsViewpoint (const PointT &point, float vp_x, float vp_y, float vp_z, float &nx, float &ny, float &nz)
Flip (in place) the estimated normal of a point towards a given viewpoint. More...
template<typename PointNT >
bool pcl::flipNormalTowardsNormalsMean (pcl::PointCloud< PointNT > const &normal_cloud, pcl::Indices const &normal_indices, Eigen::Vector3f &normal)
Flip (in place) normal to get the same sign of the mean of the normals specified by normal_indices. More...
PCL_EXPORTS bool pcl::computePairFeatures (const Eigen::Vector4f &p1, const Eigen::Vector4f &n1, const Eigen::Vector4f &p2, const Eigen::Vector4f &n2, float &f1, float &f2, float &f3, float &f4)
Compute the 4-tuple representation containing the three angles and one distance between two points represented by Cartesian coordinates and normals. More...
template<int N>
void pcl::getFeaturePointCloud (const std::vector< Eigen::MatrixXf, Eigen::aligned_allocator< Eigen::MatrixXf > > &histograms2D, PointCloud< Histogram< N > > &histogramsPC)
Transform a list of 2D matrices into a point cloud containing the values in a vector (Histogram<N>). More...
template<typename PointInT , typename PointNT , typename PointOutT >
Eigen::MatrixXf pcl::computeRSD (const pcl::PointCloud< PointInT > &surface, const pcl::PointCloud< PointNT > &normals, const pcl::Indices &indices, double max_dist, int nr_subdiv, double plane_radius, PointOutT &radii, bool compute_histogram=false)
Estimate the Radius-based Surface Descriptor (RSD) for a given point based on its spatial neighborhood of 3D points with normals. More...
template<typename PointNT , typename PointOutT >
Eigen::MatrixXf pcl::computeRSD (const pcl::PointCloud< PointNT > &normals, const pcl::Indices &indices, const std::vector< float > &sqr_dists, double max_dist, int nr_subdiv, double plane_radius, PointOutT &radii, bool compute_histogram=false)
Estimate the Radius-based Surface Descriptor (RSD) for a given point based on its spatial neighborhood of 3D points with normals. More...

Function Documentation

computePairFeatures()

PCL_EXPORTS bool pcl::computePairFeatures ( const Eigen::Vector4f & p1,
const Eigen::Vector4f & n1,
const Eigen::Vector4f & p2,
const Eigen::Vector4f & n2,
float & f1,
float & f2,
float & f3,
float & f4
)

#include <pcl/features/pfh_tools.h>

Compute the 4-tuple representation containing the three angles and one distance between two points represented by Cartesian coordinates and normals.

Note
For explanations about the features, please see the literature mentioned above (the order of the features might be different).
Parameters
[in] p1 the first XYZ point
[in] n1 the first surface normal
[in] p2 the second XYZ point
[in] n2 the second surface normal
[out] f1 the first angular feature (angle between the projection of nq_idx and u)
[out] f2 the second angular feature (angle between nq_idx and v)
[out] f3 the third angular feature (angle between np_idx and |p_idx - q_idx|)
[out] f4 the distance feature (p_idx - q_idx)
Note
For efficiency reasons, we assume that the point data passed to the method is finite.

Referenced by pcl::FPFHEstimation< PointInT, PointNT, PointOutT >::computePairFeatures(), pcl::PFHEstimation< PointInT, PointNT, PointOutT >::computePairFeatures(), pcl::PFHEstimation< PointInT, PointNT, PointOutT >::computePointPFHSignature(), pcl::VFHEstimation< PointInT, PointNT, PointOutT >::computePointSPFHSignature(), and pcl::FPFHEstimation< PointInT, PointNT, PointOutT >::computePointSPFHSignature().

computePointNormal() [1/2]

template<typename PointT >
bool pcl::computePointNormal ( const pcl::PointCloud< PointT > & cloud,
const pcl::Indices & indices,
Eigen::Vector4f & plane_parameters,
float & curvature
)
inline

#include <pcl/features/normal_3d.h>

Compute the Least-Squares plane fit for a given set of points, using their indices, and return the estimated plane parameters together with the surface curvature.

Parameters
cloud the input point cloud
indices the point cloud indices that need to be used
plane_parameters the plane parameters as: a, b, c, d (ax + by + cz + d = 0)
curvature the estimated surface curvature as a measure of

\[ \lambda_0 / (\lambda_0 + \lambda_1 + \lambda_2) \]

Definition at line 94 of file normal_3d.h.

References pcl::computeMeanAndCovarianceMatrix(), and pcl::solvePlaneParameters().

computePointNormal() [2/2]

template<typename PointT >
bool pcl::computePointNormal ( const pcl::PointCloud< PointT > & cloud,
Eigen::Vector4f & plane_parameters,
float & curvature
)
inline

#include <pcl/features/normal_3d.h>

Compute the Least-Squares plane fit for a given set of points, and return the estimated plane parameters together with the surface curvature.

Parameters
cloud the input point cloud
plane_parameters the plane parameters as: a, b, c, d (ax + by + cz + d = 0)
curvature the estimated surface curvature as a measure of

\[ \lambda_0 / (\lambda_0 + \lambda_1 + \lambda_2) \]

Definition at line 61 of file normal_3d.h.

References pcl::computeMeanAndCovarianceMatrix(), pcl::PointCloud< PointT >::size(), and pcl::solvePlaneParameters().

Referenced by pcl::NormalEstimation< PointInT, PointNT >::computeFeature(), pcl::IntegralImageNormalEstimation< pcl::PointXYZRGBA, pcl::Normal >::computeFeatureFull(), and pcl::IntegralImageNormalEstimation< pcl::PointXYZRGBA, pcl::Normal >::computeFeaturePart().

computeRSD() [1/2]

template<typename PointInT , typename PointNT , typename PointOutT >
Eigen::MatrixXf pcl::computeRSD ( const pcl::PointCloud< PointInT > & surface,
const pcl::PointCloud< PointNT > & normals,
const pcl::Indices & indices,
double max_dist,
int nr_subdiv,
double plane_radius,
PointOutT & radii,
bool compute_histogram = false
)

#include <pcl/features/rsd.h>

Estimate the Radius-based Surface Descriptor (RSD) for a given point based on its spatial neighborhood of 3D points with normals.

Parameters
[in] surface the dataset containing the XYZ points
[in] normals the dataset containing the surface normals at each point in the dataset
[in] indices the neighborhood point indices in the dataset (first point is used as the reference)
[in] max_dist the upper bound for the considered distance interval
[in] nr_subdiv the number of subdivisions for the considered distance interval
[in] plane_radius maximum radius, above which everything can be considered planar
[in] radii the output point of a type that should have r_min and r_max fields
[in] compute_histogram if not false, the full neighborhood histogram is provided, usable as a point signature
Note
: orientation is neglected!
: we neglect points that are outside the specified interval!

Definition at line 49 of file rsd.hpp.

References M_PI.

Referenced by pcl::RSDEstimation< PointInT, PointNT, PointOutT >::computeFeature().

computeRSD() [2/2]

template<typename PointNT , typename PointOutT >
Eigen::MatrixXf pcl::computeRSD ( const pcl::PointCloud< PointNT > & normals,
const pcl::Indices & indices,
const std::vector< float > & sqr_dists,
double max_dist,
int nr_subdiv,
double plane_radius,
PointOutT & radii,
bool compute_histogram = false
)

#include <pcl/features/rsd.h>

Estimate the Radius-based Surface Descriptor (RSD) for a given point based on its spatial neighborhood of 3D points with normals.

Parameters
[in] normals the dataset containing the surface normals at each point in the dataset
[in] indices the neighborhood point indices in the dataset (first point is used as the reference)
[in] sqr_dists the squared distances from the first to all points in the neighborhood
[in] max_dist the upper bound for the considered distance interval
[in] nr_subdiv the number of subdivisions for the considered distance interval
[in] plane_radius maximum radius, above which everything can be considered planar
[in] radii the output point of a type that should have r_min and r_max fields
[in] compute_histogram if not false, the full neighborhood histogram is provided, usable as a point signature
Note
: orientation is neglected!
: we neglect points that are outside the specified interval!

Definition at line 149 of file rsd.hpp.

References M_PI.

flipNormalTowardsNormalsMean()

template<typename PointNT >
bool pcl::flipNormalTowardsNormalsMean ( pcl::PointCloud< PointNT > const & normal_cloud,
pcl::Indices const & normal_indices,
Eigen::Vector3f & normal
)
inline

#include <pcl/features/normal_3d.h>

Flip (in place) normal to get the same sign of the mean of the normals specified by normal_indices.

The method is described in: A. Petrelli, L. Di Stefano, "A repeatable and efficient canonical reference for surface matching", 3DimPVT, 2012 A. Petrelli, L. Di Stefano, "On the repeatability of the local reference frame for partial shape matching", 13th International Conference on Computer Vision (ICCV), 2011

Normals should be unit vectors. Otherwise the resulting mean would be weighted by the normal norms.

Parameters
[in] normal_cloud Cloud of normals used to compute the mean
[in] normal_indices Indices of normals used to compute the mean
[in] normal input Normal to flip. Normal is modified by the function.
Returns
false if normal_indices does not contain any valid normal.

Definition at line 204 of file normal_3d.h.

References pcl::isFinite().

flipNormalTowardsViewpoint() [1/3]

template<typename PointT , typename Scalar >
void pcl::flipNormalTowardsViewpoint ( const PointT & point,
float vp_x,
float vp_y,
float vp_z,
Eigen::Matrix< Scalar, 3, 1 > & normal
)
inline

#include <pcl/features/normal_3d.h>

Flip (in place) the estimated normal of a point towards a given viewpoint.

Parameters
point a given point
vp_x the X coordinate of the viewpoint
vp_y the X coordinate of the viewpoint
vp_z the X coordinate of the viewpoint
normal the plane normal to be flipped

Definition at line 149 of file normal_3d.h.

flipNormalTowardsViewpoint() [2/3]

template<typename PointT , typename Scalar >
void pcl::flipNormalTowardsViewpoint ( const PointT & point,
float vp_x,
float vp_y,
float vp_z,
Eigen::Matrix< Scalar, 4, 1 > & normal
)
inline

#include <pcl/features/normal_3d.h>

Flip (in place) the estimated normal of a point towards a given viewpoint.

Parameters
point a given point
vp_x the X coordinate of the viewpoint
vp_y the X coordinate of the viewpoint
vp_z the X coordinate of the viewpoint
normal the plane normal to be flipped

Definition at line 122 of file normal_3d.h.

Referenced by pcl::features::computeApproximateNormals(), pcl::NormalEstimation< PointInT, PointNT >::computeFeature(), pcl::IntegralImageNormalEstimation< pcl::PointXYZRGBA, pcl::Normal >::computePointNormal(), and pcl::IntegralImageNormalEstimation< pcl::PointXYZRGBA, pcl::Normal >::computePointNormalMirror().

flipNormalTowardsViewpoint() [3/3]

template<typename PointT >
void pcl::flipNormalTowardsViewpoint ( const PointT & point,
float vp_x,
float vp_y,
float vp_z,
float & nx,
float & ny,
float & nz
)
inline

#include <pcl/features/normal_3d.h>

Flip (in place) the estimated normal of a point towards a given viewpoint.

Parameters
point a given point
vp_x the X coordinate of the viewpoint
vp_y the X coordinate of the viewpoint
vp_z the X coordinate of the viewpoint
nx the resultant X component of the plane normal
ny the resultant Y component of the plane normal
nz the resultant Z component of the plane normal

Definition at line 170 of file normal_3d.h.

getFeaturePointCloud()

template<int N>
void pcl::getFeaturePointCloud ( const std::vector< Eigen::MatrixXf, Eigen::aligned_allocator< Eigen::MatrixXf > > & histograms2D,
PointCloud< Histogram< N > > & histogramsPC
)

#include <pcl/features/rsd.h>

Transform a list of 2D matrices into a point cloud containing the values in a vector (Histogram<N>).

Can be used to transform the 2D histograms obtained in RSDEstimation into a point cloud.

Note
The template parameter N should be (greater or) equal to the product of the number of rows and columns.
Parameters
[in] histograms2D the list of neighborhood 2D histograms
[out] histogramsPC the dataset containing the linearized matrices

Definition at line 57 of file rsd.h.

References pcl::PointCloud< PointT >::begin().

solvePlaneParameters() [1/2]

void pcl::solvePlaneParameters ( const Eigen::Matrix3f & covariance_matrix,
const Eigen::Vector4f & point,
Eigen::Vector4f & plane_parameters,
float & curvature
)
inline

#include <pcl/features/feature.h>

Solve the eigenvalues and eigenvectors of a given 3x3 covariance matrix, and estimate the least-squares plane normal and surface curvature.

Parameters
covariance_matrix the 3x3 covariance matrix
point a point lying on the least-squares plane (SSE aligned)
plane_parameters the resultant plane parameters as: a, b, c, d (ax + by + cz + d = 0)
curvature the estimated surface curvature as a measure of

\[ \lambda_0 / (\lambda_0 + \lambda_1 + \lambda_2) \]

Definition at line 52 of file feature.hpp.

Referenced by pcl::computePointNormal(), and pcl::NormalEstimation< PointInT, PointNT >::computePointNormal().

solvePlaneParameters() [2/2]

void pcl::solvePlaneParameters ( const Eigen::Matrix3f & covariance_matrix,
float & nx,
float & ny,
float & nz,
float & curvature
)
inline

#include <pcl/features/feature.h>

Solve the eigenvalues and eigenvectors of a given 3x3 covariance matrix, and estimate the least-squares plane normal and surface curvature.

Parameters
covariance_matrix the 3x3 covariance matrix
nx the resultant X component of the plane normal
ny the resultant Y component of the plane normal
nz the resultant Z component of the plane normal
curvature the estimated surface curvature as a measure of

\[ \lambda_0 / (\lambda_0 + \lambda_1 + \lambda_2) \]

Definition at line 65 of file feature.hpp.

References pcl::eigen33().

© 2009–2012, Willow Garage, Inc.
© 2012–, Open Perception, Inc.
Licensed under the BSD License.
https://pointclouds.org/documentation/group__features.html