W3cubDocs

/PointCloudLibrary

Detailed Description

Overview

Combining several datasets into a global consistent model is usually performed using a technique called registration. The key idea is to identify corresponding points between the data sets and find a transformation that minimizes the distance (alignment error) between corresponding points. This process is repeated, since correspondence search is affected by the relative position and orientation of the data sets. Once the alignment errors fall below a given threshold, the registration is said to be complete.

The pcl_registration library implements a plethora of point cloud registration algorithms for both organized and unorganized (general purpose) datasets.

Requirements

Classes

class pcl::registration::ConvergenceCriteria
ConvergenceCriteria represents an abstract base class for different convergence criteria used in registration loops. More...
class pcl::registration::CorrespondenceEstimationBase< PointSource, PointTarget, Scalar >
Abstract CorrespondenceEstimationBase class. More...
class pcl::registration::CorrespondenceEstimation< PointSource, PointTarget, Scalar >
CorrespondenceEstimation represents the base class for determining correspondences between target and query point sets/features. More...
class pcl::registration::CorrespondenceEstimationBackProjection< PointSource, PointTarget, NormalT, Scalar >
CorrespondenceEstimationBackprojection computes correspondences as points in the target cloud which have minimum More...
class pcl::registration::CorrespondenceEstimationNormalShooting< PointSource, PointTarget, NormalT, Scalar >
CorrespondenceEstimationNormalShooting computes correspondences as points in the target cloud which have minimum distance to normals computed on the input cloud More...
class pcl::registration::CorrespondenceEstimationOrganizedProjection< PointSource, PointTarget, Scalar >
CorrespondenceEstimationOrganizedProjection computes correspondences by projecting the source point cloud onto the target point cloud using the camera intrinsic and extrinsic parameters. More...
class pcl::registration::CorrespondenceRejector
CorrespondenceRejector represents the base class for correspondence rejection methods More...
class pcl::registration::DataContainerInterface
DataContainerInterface provides a generic interface for computing correspondence scores between correspondent points in the input and target clouds More...
class pcl::registration::DataContainer< PointT, NormalT >
DataContainer is a container for the input and target point clouds and implements the interface to compute correspondence scores between correspondent points in the input and target clouds More...
class pcl::registration::CorrespondenceRejectorDistance
CorrespondenceRejectorDistance implements a simple correspondence rejection method based on thresholding the distances between the correspondences. More...
class pcl::registration::CorrespondenceRejectorFeatures
CorrespondenceRejectorFeatures implements a correspondence rejection method based on a set of feature descriptors. More...
class pcl::registration::CorrespondenceRejectorMedianDistance
CorrespondenceRejectorMedianDistance implements a simple correspondence rejection method based on thresholding based on the median distance between the correspondences. More...
class pcl::registration::CorrespondenceRejectorOneToOne
CorrespondenceRejectorOneToOne implements a correspondence rejection method based on eliminating duplicate match indices in the correspondences. More...
class pcl::registration::CorrespondenceRejectionOrganizedBoundary
The CorrespondenceRejectionOrganizedBoundary class implements a simple correspondence rejection measure. More...
class pcl::registration::CorrespondenceRejectorPoly< SourceT, TargetT >
CorrespondenceRejectorPoly implements a correspondence rejection method that exploits low-level and pose-invariant geometric constraints between two point sets by forming virtual polygons of a user-specifiable cardinality on each model using the input correspondences. More...
class pcl::registration::CorrespondenceRejectorSampleConsensus< PointT >
CorrespondenceRejectorSampleConsensus implements a correspondence rejection using Random Sample Consensus to identify inliers (and reject outliers) More...
class pcl::registration::CorrespondenceRejectorSampleConsensus2D< PointT >
CorrespondenceRejectorSampleConsensus2D implements a pixel-based correspondence rejection using Random Sample Consensus to identify inliers (and reject outliers) More...
class pcl::registration::CorrespondenceRejectorSurfaceNormal
CorrespondenceRejectorSurfaceNormal implements a simple correspondence rejection method based on the angle between the normals at correspondent points. More...
class pcl::registration::CorrespondenceRejectorTrimmed
CorrespondenceRejectorTrimmed implements a correspondence rejection for ICP-like registration algorithms that uses only the best 'k' correspondences where 'k' is some estimate of the overlap between the two point clouds being registered. More...
class pcl::registration::CorrespondenceRejectorVarTrimmed
CorrespondenceRejectoVarTrimmed implements a simple correspondence rejection method by considering as inliers a certain percentage of correspondences with the least distances. More...
struct pcl::registration::sortCorrespondencesByQueryIndex
sortCorrespondencesByQueryIndex : a functor for sorting correspondences by query index More...
struct pcl::registration::sortCorrespondencesByMatchIndex
sortCorrespondencesByMatchIndex : a functor for sorting correspondences by match index More...
struct pcl::registration::sortCorrespondencesByDistance
sortCorrespondencesByDistance : a functor for sorting correspondences by distance More...
struct pcl::registration::sortCorrespondencesByQueryIndexAndDistance
sortCorrespondencesByQueryIndexAndDistance : a functor for sorting correspondences by query index and distance More...
struct pcl::registration::sortCorrespondencesByMatchIndexAndDistance
sortCorrespondencesByMatchIndexAndDistance : a functor for sorting correspondences by match index and distance More...
class pcl::registration::DefaultConvergenceCriteria< Scalar >
DefaultConvergenceCriteria represents an instantiation of ConvergenceCriteria, and implements the following criteria for registration loop evaluation: More...
struct pcl::registration::NullMeasurement
NullMeasurement struct More...
struct pcl::registration::PoseMeasurement< VertexT, InformationT >
PoseMeasurement struct More...
class pcl::registration::ELCH< PointT >
ELCH (Explicit Loop Closing Heuristic) class More...
class pcl::GeneralizedIterativeClosestPoint< PointSource, PointTarget >
GeneralizedIterativeClosestPoint is an ICP variant that implements the generalized iterative closest point algorithm as described by Alex Segal et al. More...
class pcl::GeneralizedIterativeClosestPoint6D
GeneralizedIterativeClosestPoint6D integrates L*a*b* color space information into the Generalized Iterative Closest Point (GICP) algorithm. More...
class pcl::registration::GraphHandler< GraphT >
GraphHandler class is a wrapper for a general SLAM graph The actual graph class must fulfill the following boost::graph concepts: More...
class pcl::registration::GraphOptimizer< GraphT >
GraphOptimizer class; derive and specialize for each graph type More...
class pcl::GraphRegistration< GraphT >
GraphRegistration class is the base class for graph-based registration methods More...
class pcl::registration::FPCSInitialAlignment< PointSource, PointTarget, NormalT, Scalar >
FPCSInitialAlignment computes corresponding four point congruent sets as described in: "4-points congruent sets for robust pairwise surface registration", Dror Aiger, Niloy Mitra, Daniel Cohen-Or. More...
class pcl::registration::KFPCSInitialAlignment< PointSource, PointTarget, NormalT, Scalar >
KFPCSInitialAlignment computes corresponding four point congruent sets based on keypoints as described in: "Markerless point cloud registration with keypoint-based 4-points congruent sets", Pascal Theiler, Jan Dirk Wegner, Konrad Schindler. More...
class pcl::SampleConsensusInitialAlignment< PointSource, PointTarget, FeatureT >
SampleConsensusInitialAlignment is an implementation of the initial alignment algorithm described in section IV of "Fast Point Feature Histograms (FPFH) for 3D Registration," Rusu et al. More...
class pcl::IterativeClosestPoint< PointSource, PointTarget, Scalar >
IterativeClosestPoint provides a base implementation of the Iterative Closest Point algorithm. More...
class pcl::IterativeClosestPointWithNormals< PointSource, PointTarget, Scalar >
IterativeClosestPointWithNormals is a special case of IterativeClosestPoint, that uses a transformation estimated based on Point to Plane distances by default. More...
class pcl::IterativeClosestPointNonLinear< PointSource, PointTarget, Scalar >
IterativeClosestPointNonLinear is an ICP variant that uses Levenberg-Marquardt optimization backend. More...
class pcl::registration::IncrementalRegistration< PointT, Scalar >
Incremental IterativeClosestPoint class. More...
class pcl::JointIterativeClosestPoint< PointSource, PointTarget, Scalar >
JointIterativeClosestPoint extends ICP to multiple frames which share the same transform. More...
class pcl::registration::LUM< PointT >
Globally Consistent Scan Matching based on an algorithm by Lu and Milios. More...
class pcl::registration::MetaRegistration< PointT, Scalar >
Meta Registration class. More...
class pcl::PairwiseGraphRegistration< GraphT, PointT >
PairwiseGraphRegistration class aligns the clouds two by two More...
class pcl::Registration< PointSource, PointTarget, Scalar >
Registration represents the base registration class for general purpose, ICP-like methods. More...
class pcl::SampleConsensusPrerejective< PointSource, PointTarget, FeatureT >
Pose estimation and alignment class using a prerejective RANSAC routine. More...
class pcl::registration::TransformationEstimation< PointSource, PointTarget, Scalar >
TransformationEstimation represents the base class for methods for transformation estimation based on: More...
class pcl::registration::TransformationEstimation2D< PointSource, PointTarget, Scalar >
TransformationEstimation2D implements a simple 2D rigid transformation estimation (x, y, theta) for a given pair of datasets. More...
class pcl::registration::TransformationEstimation3Point< PointSource, PointTarget, Scalar >
TransformationEstimation3Points represents the class for transformation estimation based on: More...
class pcl::registration::TransformationEstimationDQ< PointSource, PointTarget, Scalar >
TransformationEstimationDQ implements dual quaternion based estimation of the transformation aligning the given correspondences. More...
class pcl::registration::TransformationEstimationDualQuaternion< PointSource, PointTarget, Scalar >
TransformationEstimationDualQuaternion implements dual quaternion based estimation of the transformation aligning the given correspondences. More...
class pcl::registration::TransformationEstimationLM< PointSource, PointTarget, MatScalar >
TransformationEstimationLM implements Levenberg Marquardt-based estimation of the transformation aligning the given correspondences. More...
class pcl::registration::TransformationEstimationPointToPlane< PointSource, PointTarget, Scalar >
TransformationEstimationPointToPlane uses Levenberg Marquardt optimization to find the transformation that minimizes the point-to-plane distance between the given correspondences. More...
class pcl::registration::TransformationEstimationPointToPlaneLLS< PointSource, PointTarget, Scalar >
TransformationEstimationPointToPlaneLLS implements a Linear Least Squares (LLS) approximation for minimizing the point-to-plane distance between two clouds of corresponding points with normals. More...
class pcl::registration::TransformationEstimationPointToPlaneLLSWeighted< PointSource, PointTarget, Scalar >
TransformationEstimationPointToPlaneLLSWeighted implements a Linear Least Squares (LLS) approximation for minimizing the point-to-plane distance between two clouds of corresponding points with normals, with the possibility of assigning weights to the correspondences. More...
class pcl::registration::TransformationEstimationPointToPlaneWeighted< PointSource, PointTarget, MatScalar >
TransformationEstimationPointToPlaneWeighted uses Levenberg Marquardt optimization to find the transformation that minimizes the point-to-plane distance between the given correspondences. More...
class pcl::registration::TransformationEstimationSVD< PointSource, PointTarget, Scalar >
TransformationEstimationSVD implements SVD-based estimation of the transformation aligning the given correspondences. More...
class pcl::registration::TransformationEstimationSVDScale< PointSource, PointTarget, Scalar >
TransformationEstimationSVD implements SVD-based estimation of the transformation aligning the given correspondences. More...
class pcl::registration::TransformationEstimationSymmetricPointToPlaneLLS< PointSource, PointTarget, Scalar >
TransformationEstimationSymmetricPointToPlaneLLS implements a Linear Least Squares (LLS) approximation for minimizing the symmetric point-to-plane distance between two clouds of corresponding points with normals. More...
class pcl::registration::TransformationValidation< PointSource, PointTarget, Scalar >
TransformationValidation represents the base class for methods that validate the correctness of a transformation found through TransformationEstimation. More...
class pcl::registration::TransformationValidationEuclidean< PointSource, PointTarget, Scalar >
TransformationValidationEuclidean computes an L2SQR norm between a source and target dataset. More...
struct pcl::registration::NullEstimate
NullEstimate struct More...
struct pcl::registration::PoseEstimate< PointT >
PoseEstimate struct More...
class pcl::registration::WarpPointRigid< PointSourceT, PointTargetT, Scalar >
Base warp point class. More...
class pcl::registration::WarpPointRigid3D< PointSourceT, PointTargetT, Scalar >
WarpPointRigid3D enables 3D (1D rotation + 2D translation) transformations for points. More...
class pcl::registration::WarpPointRigid6D< PointSourceT, PointTargetT, Scalar >
WarpPointRigid3D enables 6D (3D rotation + 3D translation) transformations for points. More...

© 2009–2012, Willow Garage, Inc.
© 2012–, Open Perception, Inc.
Licensed under the BSD License.
https://pointclouds.org/documentation/group__registration.html